(1)针对基于受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)的协同过滤算法在预测阶段容易同化用户个性化需求影响推荐准确性的问题,提出了一种基于最近邻的受限玻尔兹曼机协同过滤推荐算法。近邻用户之间的兴趣会存在较高的相似性,相同兴趣的用户对同一个项目的评分也更接近。根据这一直观感受,计算项目(用户未评分而最近邻中有评分)的评分等级概率,将该概率融入RBM模型预测阶段强化预测结果中用户的个性化,提高算法预测的准确性。实验结果证明,加入最近邻的改进算法不仅使提高了算法的预测准确性,而且还增强了算法的抗过拟合能力。(2)针对基于受限玻尔兹曼机的协同过滤算法预测对“热门项目”有标新立异看法的用户的评分准确性差、预测“冷门项目”辨别力差的问题,提出一种基于项目标签的受限玻尔兹曼机的协同过滤算法。利用项目自身存在的客观标签(如电影的主题、商品的类别等)描述用户自身兴趣偏好,此过程只利用到用户自身已评分过的项目信息,强化了用户的个性化需求。且对“冷门项目”的预测依据更加客观真实、预测结果准确性也更高。最后实验结果证明,加入项目客观标签后算法的预测准确性提高达1.2%。