proginn徐boy
8天前在线
全职 · 300/日  ·  6525/月
工作时间: 工作日08:00-17:00、周末08:00-17:00工作地点: 远程
服务企业: 0家累计提交: 0工时
联系方式:
********
********
********
聊一聊

使用APP扫码聊一聊

个人介绍

我是程序员客栈的【proginn徐boy】,一名专注于**Python人工智能应用**的开发者;

目前就读于**江苏科技大学**人工智能专业硕士(全日制在读),专注于**机器视觉与目标检测算法**研究;

曾开发:

- 基于PyQt5的**图像检测系统**(集成YOLOv5模型,检测精度达94.3%)

- **改进过SVM算法、YOLO算法等**取得较好的涨点


核心技术能力:

✅ **算法开发**:目标检测(YOLO)、深度学习(PyTorch)、数据清洗与特征工程等

✅ **工具链**:PyQt5(界面开发)、OpenCV(计算机视觉)、ONNX(模型部署)、NumPy/Pandas(数据分析)

✅ **工程化**:掌握简易部署(Windows)


我的优势:

- 逻辑清晰的工程思维:擅长将复杂算法拆解为可落地的模块化方案


如果您需要:

- 定制化目标检测算法开发

- 基于PyQt5的AI应用界面设计

- ONNX模型的基础部署


欢迎点击“立即预约”或“发布需求”,我将提供:

- 免费需求评估方案

- 72小时内快速响应

- 可签署保密协议保障项目安全

工作经历

  • 2024-09-30 -至今江苏科技大学科研助理

    基于 PyQt5 的YOLO图像目标检测演示系统 在 1080p 图像上实现 30fps 的检测速度,对目标数据集检测的准确率达 97%。 可以使用pyinstaller打包到windows11/10运行。虽然是学习阶段的作品,但已经实现了生产级工具的基础框架,支持自定义ONNX模型导入,目前能稳定检测目标物体。

教育经历

  • 2024-09-15 - 江苏科技大学人工智能硕士已认证

语言

英语
日语
普通话
0
1
2
3
4
5

技能

0
1
2
3
4
5
作品
智能聚类分析工具

项目描述:DataCluster Pro - 智能聚类分析工具集 1. 行业与业务场景 适用行业:跨行业通用型数据分析,特别适用于公共卫生(WHO数据集)、金融客户分群、市场细分等场景 核心业务场景: 多维度客户/群体智能分群(如健康水平分组、用户价值分层) 自动化数据探索与特征工程(缺失值处理、时间特征生成) 可视化聚类结果解读(2D投影、特征雷达图) 多语言分析报告输出(中英双语一键切换) 2. 功能模块与用户价值 四大核心模块架构: 数据预处理引擎 智能处理缺失值(中位数填充数值/众数填充类别) 自动化特征工程(面板数据变化特征生成) 分类变量编码与标准化处理 用户价值:节省80%数据清洗时间,保证分析数据质量 聚类分析核心 K-means聚类优化(轮廓系数确定最佳K值) 多维特征降维(PCA可视化) 聚类结果解释(特征重要性分析) 用户价值:无需算法知识,自动获得最优分组方案 智能可视化系统 缺失值热力图 + 分布直方图 变量关系矩阵 + 相关系数热力图 聚类雷达图 + 2D投影散点图 用户价值:复杂数据关系一目了然,支持专业图表输出 多语言报告生成 中英文双语界面切换 自动生成分析报告(PDF/TXT) 聚类特征统计表输出 用户价值:国际团队协作无障碍,符合学术/商业报告标准 3. 技术选型与架构特点 核心技术栈: 数据处理:Pandas(缺失值处理) + NumPy(矩阵运算) 机器学习:Scikit-learn(KMeans, PCA, Silhouette) 可视化:Matplotlib/Seaborn + 字体自适应渲染 架构亮点: 配置驱动模式:通过修改全局变量即可切换数据集和分析目标 模块化流水线:数据加载 → 清洗 → 聚类 → 可视化 标准化流程 智能自适应: 自动检测中文字体(支持Windows/macOS) 大型数据集智能采样(>1000条自动降载) 高基数分类变量自动优化展示 面板数据专项处理:时间序列特征自动生成(变化率/差值)

0
2025-07-06 11:33
下载次数:0
¥150
基于 OpenCV 的图像特征提取、单目相机成像模型和双目立体匹配算法

一、软件面向的行业和业务场景 本项目聚焦低成本深度感知需求,适用于小型企业或创业团队的轻量级应用场景,例如: 电商3D商品展示:用*拍摄商品(如杯子、玩具)的左右视图,生成深度图,用于虚拟商城的“360°+深度”展示(比如用户可以看到杯子的凸起部分离屏幕更近,提升购物体验); 家用智能设备:扫地机器人的简单环境建模(用单相机移动拍摄,生成房间地面的深度图,判断障碍物距离,避免碰撞); 教育类APP:儿童编程软件中的“视觉实验”模块(让孩子用*拍自己的玩具,生成深度图,直观理解“双目视觉”的原理)。 这些场景的核心需求是低成本、易部署(不需要专业双目相机),而本项目用“单相机+OpenCV”完美解决了这个问题,符合就业中“用最低成本实现核心功能”的要求。 二、项目功能模块与具体功能 项目按照“标定→双目校准→匹配→深度生成”的工业级 pipeline 设计,实现了4个核心功能,每个功能都对应任务书的考核点: 相机内参校准(张正友标定): 做什么:用*拍15张不同角度的棋盘格照片(倾斜、旋转、远近),用OpenCV的cv2.calibrateCamera算法算出相机的焦距(镜头的“放大倍数”)、主点(图像中心)和畸变系数(消除镜头的“鱼眼效应”)。 为什么:没有内参,后续的深度计算会有很大误差(比如拍同一个杯子,畸变会让杯子看起来“变形”,导致深度图不准)。 相机外参定位(DLT标定): 做什么:用*拍左右两个位置的立方体照片(6cm边长,硬纸板做的),手动标注立方体的顶点(比如前面的4个角、顶面的2个角),用cv2.solvePnP算法算出相机相对于立方体的旋转方向(比如相机向左转了10度)和平移位置(比如相机离立方体20cm)。 为什么:外参是“相机在哪里”的关键参数,后续双目标定需要左右相机的外参来算它们之间的相对位置。 双目姿态校准(双目标定): 做什么:结合左右相机的外参,算出它们之间的旋转矩阵R(右相机相对于左相机转了多少度)和平移向量T(右相机在左相机右边10cm),得到基线长度(双目系统的“眼睛间距”,决定深度计算的精度)。 为什么:没有双目姿态,左右图像的“对应关系”会乱,立体匹配无法正确找到同一个点在左右图像中的位置。 立体匹配与深度计算: 做什么:(1) 用*拍左右两个角度的目标照片(比如杯子),用SAD滑动窗口算法(窗口大小可调,5x5/7x7)生成视差图(左右图像中同一个点的位置差);(2) 用视差图和之前的内参、基线长度,用公式算出深度图(灰度值表示距离,亮的地方离相机近,暗的地方离相机远)。 为什么:这是项目的核心功能——把“2D照片”变成“3D深度信息”,满足场景需求(比如电商的3D展示、扫地机器人的避障)。 三、项目的技术选型与架构特点 技术选型: 核心库:OpenCV(4.8.0版本)——工业级开源图像处理库,支持相机标定、立体匹配、深度计算等所有核心功能,跨平台(Windows/Android/iOS),适合就业中的“快速原型+部署”需求; 开发语言:Python(3.9版本)——开发效率高,语法简洁,适合快速调试(比如调整滑动窗口大小,马上就能看到深度图的变化); 硬件:*(iPhone/Android)——低成本、易获取,不需要专业相机,符合“轻量级应用”的要求。 架构特点: 模块化 pipeline:每个功能(内参校准、外参定位、双目校准、深度计算)都是独立模块,比如“内参校准”模块可以用到其他单目项目中,“立体匹配”模块可以替换算法(比如把SAD换成更准确的SGBM),便于就业中的“功能复用”; 可参数化调整:滑动窗口大小、视差范围、最大深度阈值都是可调的,比如调整窗口大小(5x5→7x7),可以对比深度图的“清晰度”和“稳定性”(窗口大,深度图更模糊但更稳定;窗口小,更清晰但容易有误差),符合任务书“不同窗口尺寸对比”的要求; 可视化结果:生成的深度图是黑白的,直观看到目标的三维形状(比如杯子的凸起部分更亮),便于就业中的“结果展示”(比如给客户看“我们的系统能算出杯子的深度”)。

0
2025-07-06 10:47
更新于: 07-06 浏览: 10