vv_zizizi191
1天前在线
全职 · 1211/日  ·  26339/月
工作时间: 工作日08:30-22:00、周末10:00-18:00工作地点: 远程
服务企业: 2家累计提交: 0工时
联系方式:
********
********
********
聊一聊

使用APP扫码聊一聊

个人介绍

编程语言:C++, Python, JavaScript

GUI开发:PySide2, Qt5

机器学习:深度学习 (熟悉), 计算机视觉 (精通),Pytorch(精通),ONNX

其他:Linux开发 (95%以上工作环境), DeepStreamer (多年经验), TensorRT (经验)

工作经历

  • 2017-07-06 -2020-02-04百度高级移动端工程师

    工程师 视觉算法 对象检测 对象识别 传统票据识别,主要识别票据有身份证,银行卡,驾驶证,行驶证,增强税发票,部署在私有云。在识别过程中,由于输入图像质量的问题导致最终准确率无法提高。需要我们在 OCR 识别前进行质量控制操作,通过这个方法可以过滤掉模糊反光等低质量的图像。从而最终提高识别准确率。

教育经历

  • 2006-03-09 - 2010-02-03华中科技大学计算机科学与技术硕士

语言

普通话
英语
0
1
2
3
4
5
0
1
2
3
4
5

技能

0
1
2
3
4
5
0
1
2
3
4
5
作品
Robust-Partial-Fingerprint-Alignment

https://github.com/leaf918/Robust-Partial-Fingerprint-Alignment Abstracts. Real-world fingerprint matching is important for a fingerprint verification system for mobile devices. Most mobile and embedded devices have a small fingerprint capture sensor that can capture ONLY a portion of the fingerprint image. In this work, we present a fast and robust method for matching fingerprints with neural networks. We use a 2-point parameterization that maps the two corners of a fingerprint to another fingerprint. We use the SOCOFing dataset to train our network. The fingerprint alignment network works without local features extracted from the fingerprint images. There is a comparison between FP21Net and traditional homography estimation based on ORB features.

0
2025-07-14 17:07
更新于: 1天前 浏览: 13