情感分类模型作业

我要开发同款
匿名用户2024年07月31日
47阅读

技术信息

开源地址
https://modelscope.cn/models/desertflower/emotionclassification
授权协议
Apache License 2.0

作品详情

Traiig procedure

Framework versios

  • SWIFT 1.5.3

Base model iformatio

  • BaseModel Class QWeLMHeadModel

情感分类,输⼊⼀段⽂本, 模型可以给出对应的情感分类

环境准备

git cloe https://github.com/modelscope/swift.git
cd swift
pip istall -e .[llm]

代码

import os
os.eviro['CUDA_VISIBLE_DEVICES'] = '0'
import torch
from swift.llm import (
DatasetName, IferArgumets, ModelType, SftArgumets,
ifer_mai, sft_mai, app_ui_mai, merge_lora_mai
)
model_type = ModelType.qwe_1_8b

sft_args = SftArgumets(
model_type=model_type,
sft_type='lora',
trai_dataset_sample=2000,
dataset=[DatasetName.jd_setimet_zh],

output_dir='output')
result = sft_mai(sft_args)
# adapter的⼤⼩: 6.1MiB
best_model_checkpoit = result['best_model_checkpoit']
prit(f'best_model_checkpoit: {best_model_checkpoit}')
torch.cuda.empty_cache()
ifer_args = IferArgumets(
ckpt_dir=best_model_checkpoit,
load_dataset_cofig=True,
do_sample=False)
result = ifer_mai(ifer_args)

结果展示

[PROMPT]Task: Setimet Classificatio
Setece: 店家太不负责任了,衣服质量太差劲了,和图片上的不一样
Category: egative, positive
Output: [OUTPUT]egative<|edoftext|>

[LABELS]egative
--------------------------------------------------
[PROMPT]Task: Setimet Classificatio
Setece: 送国际友人挺好的,不错不错!
Category: egative, positive
Output: [OUTPUT]positive<|edoftext|>

[LABELS]positive
--------------------------------------------------
[PROMPT]Task: Setimet Classificatio
Setece: 很好,装好一定很漂亮
Category: egative, positive
Output: [OUTPUT]positive<|edoftext|>

[LABELS]positive
--------------------------------------------------
[PROMPT]Task: Setimet Classificatio
Setece: 东西给你退回去了,你要黑我钱!!!
Category: egative, positive
Output: [OUTPUT]egative<|edoftext|>

[LABELS]egative
--------------------------------------------------
[PROMPT]Task: Setimet Classificatio
Setece: 送货很快,书是正品,买书一直京东是首选!
Category: egative, positive
Output: [OUTPUT]positive<|edoftext|>

[LABELS]positive
--------------------------------------------------
[PROMPT]Task: Setimet Classificatio
Setece: 口感相当的好 都想买第二次了
Category: egative, positive
Output: [OUTPUT]positive<|edoftext|>

[LABELS]positive
--------------------------------------------------
[PROMPT]Task: Setimet Classificatio
Setece: 硅胶味道太重,样子与图片差距太大
Category: egative, positive
Output: [OUTPUT]egative<|edoftext|>

[LABELS]egative
--------------------------------------------------
[PROMPT]Task: Setimet Classificatio
Setece: 很伤心,买了放到三星4尽然不能用,客服各种推
Category: egative, positive
Output: [OUTPUT]egative<|edoftext|>

[LABELS]egative
--------------------------------------------------
[PROMPT]Task: Setimet Classificatio
Setece: 质量不错,大小合适,应当是正品!但是我买的是黑灰,发来的却是纯黑,懒得换了,给个差评,希望以后改进!
Category: egative, positive
Output: [OUTPUT]positive<|edoftext|>
[INFO:swift] save_result_path: /mt/workspace/output/qwe-1_8b/v4-20240128-154925/checkpoit-100/ifer_result_20240128-155452.jsol

[LABELS]egative

功能介绍

Training procedure Framework versions SWIFT 1.5.3 Base model information BaseModel Class QWenLMHe

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论