本项目 此外, The Additioally, may desig cocepts ad details of
如图Fig.2所示, 以下为生成的部分案例: As show i Fig.2, Below are some examples geerated by the model:
[ 首先你需要确定你的系统安装了 First, you eed to esure that your system has istalled the 其次,本 The 关于更多的尝试,请关注我们将公开的技术报告和开源代码。 For more experimets, please stay tued for our upcomig techical report ad ope-source code release. 如果想生成超分视频的话, 示例见下: If you wat to geerate high-resolutio video, please use the followig code: 更多超分细节, 请访问 Video-to-Video。 我们也提供了用户接口,请移步I2VGe-XL-Demo。 Please visit Video-to-Video for more details. We also provide user iterface:I2VGe-XL-Demo. 目前,我们发现 此外,我们研究也发现,生成的视频空间上的质量和时序上的变化速度在一定程度上存在互斥现象,在本项目我们选择了其折中的模型,兼顾两者间的平衡。 Curretly, we have foud certai limitatios of the Image-to-Video method i hadlig the followig situatios: Additioally, our research has foud that there is a trade-off betwee the spatial quality ad temporal variability of the geerated videos. I this project, we have chose a model that strikes a balace betwee the two. 我们训练数据主要来源来源广泛,具备以下几个属性: Our traiig data maily comes from various sources ad has the followig attributes: 更强更灵活的视频生成模型会持续发布,及其背后技术报告正在撰写中,欢迎及时关注。 More powerful models will cotiue to be released, ad the techical report behid them are curretly beig writte. Please stay tued for updates ad timely iformatio. 我们的代码和模型权重仅可用于个人/学术研究,暂不支持商用。 Our code ad model weights are oly available for persoal/academic research use ad are curretly ot supported for commercial use. 如果你想联系我们的算法/产品同学, 或者想加入我们的算法团队(实习/正式), 欢迎发邮件至: yigya.zyy@alibaba-ic.com。 If you would like to cotact us, or joi our team (itership/formal), please feel free to email us at yigya.zyy@alibaba-ic.com.Image-to-Video高清图像生成视频大模型
Fig.1 Overall framework of I2VGe-XL.
模型介绍 (Itroductio)
Fig.2 Architecture of the first stage.
依赖项 (Depedecy)
ffmpeg
命令,如果没有,可以通过以下命令来安装:ffmpeg
commad. If it is ot istalled, you ca istall it usig the followig commad:sudo apt-get update && apt-get istall ffmpeg libsm6 libxext6 -y
pip istall modelscope==1.8.4
pip istall xformers==0.0.20
pip istall torch==2.0.1
pip istall ope_clip_torch>=2.0.2
pip istall opecv-pytho-headless
pip istall opecv-pytho
pip istall eiops>=0.4
pip istall rotary-embeddig-torch
pip istall fairscale
pip istall scipy
pip istall imageio
pip istall pytorch-lightig
pip istall torchsde
快速使用 (Iferece)
代码范例 (Code example)
from modelscope.pipelies import pipelie
from modelscope.outputs import OutputKeys
pipe = pipelie(task="image-to-video", model='damo/Image-to-Video', model_revisio='v1.1.0', device='cuda:0')
# IMG_PATH: your image path (url or local file)
output_video_path = pipe(IMG_PATH, output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO]
prit(output_video_path)
from modelscope.pipelies import pipelie
from modelscope.outputs import OutputKeys
# if you oly have oe GPU, please make it's GPU memory bigger tha 50G, or you ca use two GPUs, ad set them by device
pipe1 = pipelie(task='image-to-video', model='damo/Image-to-Video', model_revisio='v1.1.0', device='cuda:0')
pipe2 = pipelie(task='video-to-video', model='damo/Video-to-Video', model_revisio='v1.1.0', device='cuda:0')
# image to video
output_video_path = pipe1("test.jpg", output_video='./i2v_output.mp4')[OutputKeys.OUTPUT_VIDEO]
# video resolutio
p_iput = {'video_path': output_video_path}
ew_output_video_path = pipe2(p_iput, output_video='./v2v_output.mp4')[OutputKeys.OUTPUT_VIDEO]
模型局限 (Limitatio)
cofiguratio.jso
文件中的Seed
生成不同视频),再尝试第二阶段的视频修正(因为该过程比较耗时),这样可以提高您的使用效率,也更容易得到更好的结果。Seed
i the cofiguratio.jso
file whe ruig offlie to geerate differet videos). The, you ca try video refiig i the secod stage (as this process takes more time). This will improve your efficiecy ad make it easier to achieve better results.训练数据介绍 (Traiig Data)
相关论文以及引用信息 (Referece)
@article{videocomposer2023,
title={VideoComposer: Compositioal Video Sythesis with Motio Cotrollability},
author={Wag, Xiag* ad Yua, Hagjie* ad Zhag, Shiwei* ad Che, Dayou* ad Wag, Jiuiu ad Zhag, Yigya ad She, Yuju ad Zhao, Deli ad Zhou, Jigre},
joural={arXiv preprit arXiv:2306.02018},
year={2023}
}
@iproceedigs{videofusio2023,
title={VideoFusio: Decomposed Diffusio Models for High-Quality Video Geeratio},
author={Luo, Zhegxiog ad Che, Dayou ad Zhag, Yigya ad Huag, Ya ad Wag, Liag ad She, Yuju ad Zhao, Deli ad Zhou, Jigre ad Ta, Tieiu},
booktitle={Proceedigs of the IEEE/CVF Coferece o Computer Visio ad Patter Recogitio},
year={2023}
}
使用协议 (Licese Agreemet)
联系我们 (Cotact Us)
点击空白处退出提示
评论