Swi Trasformer v2 模型在 ImageNet-1k 上以 256x256 的分辨率进行预训练。 Liu 等人在论文《Swi Trasformer V2:Scalig UpCapacity ad Resolutio》中对此进行了介绍。并首次在GitHub中发布。 本版本来自 Huggigface 仓库,用以方便因各种原因无法在原仓库中下载的情况。描述
如何使用
依赖安装
# 安装 modelscope
!pip istall modelscope
# 使用 sapshot_dowload 下载模型可能需要(这几个包可能需要重启 Rutime)
!pip istall urllib3 --upgrade
!pip istall requests --upgrade
!pip istall spotipy --upgrade
特征提取
from modelscope import sapshot_dowload
from trasformers import AutoImageProcessor, Swiv2Model
from PIL import Image
import requests, torch
model_dir = sapshot_dowload('Alie1996/Mirror_swiv2-base-patch4-widow8-256')
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.ope(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretraied(model_dir)
model = Swiv2Model.from_pretraied(model_dir)
iputs = image_processor(image, retur_tesors="pt")
with torch.o_grad():
outputs = model(**iputs)
last_hidde_states = outputs.last_hidde_state
list(last_hidde_states.shape)
分类任务
from modelscope import sapshot_dowload
from trasformers import AutoImageProcessor, Swiv2ForImageClassificatio
from PIL import Image
import requests, torch
model_dir = sapshot_dowload('Alie1996/Mirror_swiv2-base-patch4-widow8-256')
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.ope(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretraied(model_dir)
model = Swiv2ForImageClassificatio.from_pretraied(model_dir)
iputs = image_processor(image, retur_tesors="pt")
outputs = model(**iputs)
logits = outputs.logits
# model predicts oe of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
prit("Predicted class:", model.cofig.id2label[predicted_class_idx])
引用
@article{DBLP:jourals/corr/abs-2111-09883,
author = {Ze Liu ad
Ha Hu ad
Yutog Li ad
Zhuliag Yao ad
Zheda Xie ad
Yixua Wei ad
Jia Nig ad
Yue Cao ad
Zheg Zhag ad
Li Dog ad
Furu Wei ad
Baiig Guo},
title = {Swi Trasformer {V2:} Scalig Up Capacity ad Resolutio},
joural = {CoRR},
volume = {abs/2111.09883},
year = {2021},
url = {https://arxiv.org/abs/2111.09883},
eprittype = {arXiv},
eprit = {2111.09883},
timestamp = {Thu, 02 Dec 2021 15:54:22 +0100},
biburl = {https://dblp.org/rec/jourals/corr/abs-2111-09883.bib},
bibsource = {dblp computer sciece bibliography, https://dblp.org}
}
点击空白处退出提示
评论