深度学习

项目包含多个核心功能模块:基础LSTM模型、BayesianLSTM模型和ResNet-LSTM混合模型,每种模型针对不同复杂度的文档格式识别任务提供最佳解决方案。主要功能包括:1)支持对docx文档中商务标部分的文本序列进行建模分析,将文档内容转换为适合深度学习模型的输入格式;2)提供多种损失函数
730Python人工智能
文生图风格类源文件源码
本方案面向某汽车咨询垂直领域,解决了该用户宣传、新媒体制作等环节。可使得该公司在快速生成汽车图片时,降本增效,而且适配我开发的快速微调平台,可以快速扩展至其他车型。 相较于其他种类的微调,本微调创新性的使用了创新方法,使得生成的图片在倒影、光面、山海湖泊等场景中完美复现想要的效果。还可以自己进行参数修改,局部重绘等功能。
510PythonAI 微调2000.00元
集体照人脸考勤源文件源码
1. 项目要求在一张集体照(人数不少于10人)中,对每一张人脸进行识别,要求识别正确率达到80%以上。 2. 每个人单张图像为3~5张,使用dlib建立人脸特征库。【人脸特征库有两种建立方式:(1)使用平均人脸特征。(2)使用3~5个人脸特征作为某人人脸特征的集群。经实验发现,第二种特征库建立方式更为有效。】 3. 集体照使用dlib提取人脸特征,与人脸特征库进行对比,达到人脸识别的效果。 4. 集体照人脸识别正确达到了100%。
921Python深度学习200.00元
1. kaggle平台数据集(自杀倾向问卷数据集),要求使用stacking方式在测试集上达到90%以上分类(2分类)正确率。 2. 使用随机森林、SVM、KNN以及逻辑回归等模型作为基础学习器,使用accuracy、recall、F1 score作为评估标准,选出3个指标最高的基础学习器。 3. 对基础学习器进行参数搜索,并使用逻辑回归作为stacking方式的最终学习器。
820Python机器学习
mnist分类源文件源码
1. 数据准备。使用torchvision框架下载MNIST数据集。数据格式为IDX,该格式是一种简单的二进制格式,由高到低的字节信息内容为元数据(魔数、图像数量、图像行数、图像列数)和图像数据。每个图像大小是28x28像素。训练集60000张图像,测试集10000张图像。 2. 实例化神经网络。声明优化器与损失函数。 3.训练神经网络并记录训练损失和测试集准确率。 4.尝试不同超参数,分析测试正确率与实验配置的关系。
900Python深度学习
本项目面向 AIS 航运轨迹中常见的信号缺失与中断问题,提出了一种融合子序列 DTW 引导机制与贝叶斯优化调参的轻量级 LSTM 网络的轨迹补全方法。 具体来说,项目采用 IQR 算法与滑动窗口机制对轨迹中的异常与缺失段进行定位,构造残缺样本;利用子序列 DTW(Subsequence Dynamic Time Warping)对历史轨迹进行相似度匹配,引导后续 LSTM 模型的学习过程;并通过贝叶斯优化实现网络结构与超参数的自动化调节,在保证网络轻量化的前提下提升补全精度与鲁棒性。
960自动化测试MATLAB500.00元
基于深度学习的Web云端皮肤疾病识别工程是一个具有重要意义的项目,以下是关于该工程的一些信息: ### 技术实现 - **深度学习模型**:通常使用卷积神经网络(CNN)作为核心模型,如ResNet、DenseNet、Inception等。这些模型能够自动学习皮肤图像中的特征,从而实现对皮肤疾病的分类和识别。 - **数据处理**:需要对大量的皮肤图像数据进行收集、标注和预处理。预处理可能包括图像裁剪、归一化、增强等操作,以提高模型的鲁棒性和准确性。 - **Web云端架构**:利用云计算平台的强大计算能力,将深度学习模型部署在云端。用户可以通过Web界面上传皮肤图像,云端服务器接收图像后,调用深度学习模型进行识别,并将结果返回给用户。 ### 优势与特点 - **高效便捷**:用户无需安装复杂的软件或具备专业的技术知识,只需通过Web界面上传图像即可快速获得诊断结果。 - **准确性高**:深度学习模型在大规模数据上进行训练,能够学习到丰富的特征,从而提高皮肤疾病识别的准确性。 - **可扩展性强**:云端架构使得系统能够方便地进行扩展,以应对更多的用户请求和更复杂的模型。 ### 应用场景 - **医疗辅助诊断**:帮助医生快速筛选和初步诊断皮肤疾病,提高诊断效率。 - **远程医疗**:为偏远地区或医疗资源不足的地区提供远程诊断服务。 - **个人健康管理**:用户可以自行上传皮肤图像,及时了解自己的皮肤健康状况。
890Pythonpython1000.00元
目标检测源文件源码
本方案旨在解决目标检测和视频帧的多目标检测,该任务应用于后续的多目标跟踪和分割等任务。可根据用户需求更换数据集,不仅限于人。本方案使用深度学习框架,相比于传统算法,精度更高,本方案无需训练即可使用。
1540深度学习python
农业病虫害识别源文件源码
该项目面向农业行业,识别农业病虫害; 该项目包含如下模块: 1、数据处理模块,包括图片裁剪、增强、灰度处理等; 2、目标检测模块,检测图片中是否存在病虫害,识别病虫害的种类和位置; 3、可视化模块,对模型预测结果进行可视化; 4、API模块,访问API识别图片 该项目基于YOLO系列模型为框架,进行模型微调,满足特定图片和区域的识别
1470python计算机视觉库/人脸识别10000.00元
1、随着大模型技术的不断发展,其在智能工程质检系统中的应用前景广阔。大模型不仅能有效解决传统质检方法中存在的效率低下、成本高昂等问题,还能克服小模型在数据标注和识别率方面的局限性。因此,构建基于大模型的智能工程质检系统成为提升工程质量检测水平的关键路径之一。这样的系统不仅可以提高质检工作的自动化程度和准确性,还能为企业节省大量的人力物力资源,促进工程建设行业的数字化转型和技术升级; 2、实时视频交互,大模型与小模型结合,完善整个质检流程,提升识别率;
790深度学习大模型10000.00元
针对国外的一款小游戏,开发类似产品,满足少儿游戏需求及实现亲子陪伴,同时在玩游戏时可以学习一些知识。学生用马克笔在图纸上画出各种颜色物体,以红黄蓝绿为主要功能颜色,并能从相机选择照片上传,可实现障碍跑酷、接水果、飞机大战、翻牌对对碰等小游戏。该项目主要功能点包括:颜色识别分 割、通用分割、相似性图片检测、文字识别及语音识别等,丰富小学生生活同时,并其实现相应的教育价值。
720深度学习图像处理10000.00元
仪表盘读数识别源文件源码
算法分为4个流程,首先用yolov5s模型从原图中识别出仪,接着用yolov8x-pose模型检测出仪表中的刻度线、指针的关键点,再用DBNetpp模型检测出数值框并用SATRN模型进行文本识别,最后后处理得到读数结果。
690深度学习图像识别10000.00元
1、为了提供优质的乘车体验和便捷的购物服务,在用户的打车过程中,座舱内配备了无人售货服务,供应各类商品如饮料、小食品及广告商提供的化妆品小样等。该服务包括两项主要功能:一是识别乘客从售货机中取出的商品;二是识别司机补充的商品。通过精准识别商品的拿取和补充动作,系统将相关信息反馈给后台,以便支持自动支付流程; 2、实现目标跟踪,动态跟踪识别返回最终的识别结果,召回率0.96; 3、进行数据增强,包括亮度、对比度、翻转、剪切等,训练优化检测模型,优化损失函数,缓解遮挡问题及类别不均衡; 4、FastAPI接口服务、Docker封装私有化部署、Tensorrt推理加速;
650深度学习python10000.00元
1. 软件面向的行业和业务场景 该项目是基于强化学习的自我博弈模型,主要面向人工智能(AI)和机器学习领域,特别是在棋类游戏和智能对弈的应用场景。其核心目标是训练一个能够与人类对弈并不断优化策略的 AI 玩家。通过强化学习与蒙特卡洛树搜索(MCTS)相结合,这个软件可以应用于任何需要决策优化和策略训练的领域,如自动驾驶、金融预测、机器人控制等。 业务场景包括: 人工智能竞技游戏:用于训练 AI 玩家,模拟自我博弈,提升 AI 策略。 游戏开发与优化:游戏公司可以用该技术提升 NPC(非玩家角色)智能,增强游戏体验。 教育与研究:为机器学习和强化学习的研究者提供实用工具,帮助学习和理解深度强化学习的应用。 2. 项目分为哪些功能模块,对使用者来说具体实现哪些功能 该项目包括以下主要功能模块: Board(棋盘信息模块):该模块存储并管理棋盘的信息,定义了棋局的状态和每个玩家的操作。 MCTS(蒙特卡洛树搜索模块):用于构建决策树,通过模拟多次博弈来选择最优的落子策略。其核心思想是利用树状结构进行搜索,并根据模拟结果做出决策。 Residual Neural Network(残差神经网络模块):该模块用于训练 AI 玩家,通过深度神经网络辅助预测最佳的落子位置。网络结构采用残差神经网络(ResNet),以提高训练效果和预测准确性。 AI Player(AI 玩家模块):将蒙特卡洛树搜索与神经网络结合,构建出一个能够自我学习和对弈的智能 AI 玩家。 Game(游戏过程模块):该模块定义了自我博弈和人类对战的流程,确保系统能够支持多种游戏模式,包括 AI 自我对弈和与人类对弈。 MetaZeta(主程序和 GUI 模块):该模块整合了所有功能模块,并提供图形用户界面(GUI)进行操作。用户可以通过界面启动自我对弈或与 AI 对战的模式。 具体功能包括: AI 自我对弈:用户点击“AI 自我对弈”按钮,系统将启动 AI 玩家进行自我博弈,训练其棋局策略。 与 AI 对战:用户可以与训练好的 AI 玩家进行对弈,测试 AI 的下棋水平。 3. 项目的技术选型和架构特点 该项目采用了以下技术选型: 操作系统:Ubuntu 18.04.6 LTS。 深度学习框架:TensorFlow GPU 2.6.2,用于加速深度学习模型的训练和推理。 编程语言:Python,用于开发所有功能模块,具有良好的扩展性和兼容性。 项目的架构特点: 模块化架构:整个项目由多个独立的模块组成,包括棋盘信息管理、蒙特卡洛树搜索、残差神经网络、AI 玩家、游戏过程控制等。各模块通过接口进行交互,保证了系统的灵活性和可扩展性。 强化学习与 MCTS 结合:通过强化学习算法(自我博弈)与蒙特卡洛树搜索相结合,AI 玩家可以从对弈中不断学习和优化策略,从而提高游戏水平。 GUI 界面:项目提供了图形化界面,方便用户启动不同的模式(自我对弈或与 AI 对战)。用户通过简洁的界面与 AI 进行交互,增加了使用的友好性。
1760python机器学习/深度学习
以下是对代码的分析和总结,按照您提供的参考框架进行分类: 1. 软件面向的行业和业务场景 (25%) 该代码实现了一个基于机器学习的股票因子模型,面向金融行业,特别是量化投资和股票市场分析领域。其主要业务场景包括: 股票因子计算:通过技术因子和基本面因子的计算,分析股票的历史表现和市场特征。 预测模型训练:基于历史数据训练机器学习模型(随机森林),预测股票的未来收益。 投资决策支持:为投资者提供股票预测结果,帮助筛选出具有潜力的股票。 2. 项目分为哪些功能模块,对用户来说具体实现哪些功能 (50%) 功能模块划分及实现功能: 数据获取模块 功能:获取股票数据,包括历史价格数据和最新市场数据。 实现: get_sample_stocks:随机抽取样本股票,过滤掉ST股票、北交所股票和上市不足一年的股票。 get_historical_price_data:通过akshare获取股票的历史价格数据。 get_latest_market_data:通过akshare获取最新市场数据,包括股票的实时价格、换手率、成交量等。 因子计算模块 功能:计算技术因子和基本面因子,用于后续模型训练。 实现: calculate_technical_factors:计算动量因子、波动率因子、均线因子、RSI指标和MACD指标。 calculate_fundamental_factors:计算市盈率、市净率、换手率、量比、总市值和流通市值等基本面因子。 process_factors:对因子进行去极值处理和标准化处理。 模型训练模块 功能:训练随机森林模型,预测股票的未来收益。 实现: prepare_target:准备目标变量(5日收益率),并对数据进行去极值处理。 train_model:使用交叉验证训练随机森林模型,输出模型的特征重要性和预测性能指标(MSE)。 预测与结果生成模块 功能:基于训练好的模型生成股票预测结果,并筛选出具有潜力的股票。 实现: predict:对样本股票进行预测,生成预测收益,并结合市场数据筛选符合条件的股票。 输出结果包括股票名称、最新价、预测收益、涨跌幅、换手率、成交额、量比和市盈率等信息。 辅助模块 功能:提供数据清洗、异常处理和日志输出等功能。 实现: winsorize:对数据进行去极值处理。 standardize:对数据进行标准化处理。 main:程序入口,调用各模块完成整个流程。 3. 项目的技术选型和架构特点 (25%) 技术选型: 数据获取: 使用akshare和tushare获取股票数据,支持历史价格数据和实时市场数据的获取。 数据处理: 使用pandas和numpy进行数据清洗、因子计算和特征工程。 机器学习: 使用scikit-learn实现随机森林回归模型,支持交叉验证和特征重要性分析。 进度条: 使用tqdm显示数据获取和处理的进度条,提升用户体验。 异常处理: 使用try-except结构捕获异常,确保程序的健壮性。 架构特点: 模块化设计: 代码按照功能划分为多个模块,每个模块负责特定的任务,便于维护和扩展。 数据驱动: 整个流程以数据为核心,从数据获取到因子计算,再到模型训练和预测,每一步都依赖于数据的处理和转换。 机器学习集成: 将机器学习模型(随机森林)集成到股票因子分析中,实现对股票收益的预测。 异常处理与日志输出: 在关键步骤添加异常处理和日志输出,确保程序的稳定性和可调试性。 随机性控制: 使用固定的随机种子(random.seed和np.random.seed)确保结果的可重复性。 总结 该代码实现了一个完整的股票因子分析和预测系统,适用于金融行业的量化投资场景。通过模块化设计和机器学习技术的应用,用户可以高效地计算股票因子、训练预测模型并生成投资决策支持结果。
1250python金融1000.00元
个人实现 Stable Diffusion(AI 画图) 的安装和使用,比较适内存16G以上的计算机使用。 本文深度剖析了 Stable Diffusion 模型与其创新性扩展——ControlNet,ControlNet 作为一种新颖的条 件控制机制,用于指导扩散模型生成图像,特别是应用于 Stable Diffusion 等文生图模型。它能实现对生 成过程施加更精细的约束,使得输出图像更加符合用户的需求。 在研究中,首先概述了 Stable Diffusion 的基础架构,拆解其组成单元,讨论感知压缩、CLIP 文 本编码器、条件导向机制及核心的 UNet2DModel,揭示了从文本到视觉艺术的转换奥秘。文章聚焦 ControlNet 的核心原理与实现逻辑,在不改变原模型架构的前提下,利用辅助网络巧妙施加外部控制信 号,实现生成图像内容的精准操控。 实验部分展示了 ControlNet 在 Canny edges(边缘检测)、Openpose(人体姿态检测)的效果。结果 表明,ControlNet 在这些任务中都表现出显著的优势,尤其是在保持生成图像的文本相关性和准确性方 面。透过实践案例的棱镜,演示了 ControlNet 在网页部署的可行性,进一步凸显其即时性和普适性价值。 最后,论文总结了 ControlNet 的潜在应用前景,并提出了一些可能的改进方向。
1220深度学习人工智能500.00元
商品识别源文件源码
对于售货店的商品进行编号,并将信息录入数据库,程序通过视觉识别是哪些商品,获得对应编号价格等信息.采用改良的yolo算法,运行速度快,效果准确,在多商品的情况下也能良好地检测。在有误导物存在,或遮拦的情况下也能较为准确的检测。源代码内存较小,利于部署。
940深度学习计算机视觉库/人脸识别30.00元
无人机(UAVs)在物流和运输领域的潜力逐渐显现,亚马逊等公司开始探索使用无人机进行货物配送。复现论文数学模型,定义了类似于飞行侧踢旅行商问题(FSTSP)的问题,但适用于多卡车情况,目标是最小化成本。
770深度学习人工智能1000.00元
开发了一种深度学习模型,用于识别和分类人类的日常活动。同时,我们引入了一种新颖的音频隐私保护技术,该技术专门设计用于从高分辨率音频中提取非语音信息,并结合了惯性传感器数据。为了训练和测试我们的模型,我们构建了一个数据集,包含了多名参与者使用定制硬件设备进行的不同日常活动。我们详细阐述了数据的收集和预处理流程,并提出了一种创新的混合注意力机制的人类活动识别(HAR)方法。
1270python人工智能
1.该项目主要面向智慧城市,城市规划等方向,通过对遥感图像中各类物品的语义分割,达成各类设施统筹管理的目的 2.该项目主要采用pytorch框架,使用的是当下大热的深度学习技术,可以对各类复杂的场景进行对应的数据训练,从而达成良好的分割结果。项目主要采用HRnetV2+OCR为主要的语义分割模型,HRnetV2可以对高分辨率图像进行准确的识别处理,完成第一次分割处理,OCR模型则通过上下文检测技术,挖掘每个像素点与其他像素点的关联,以完成更进一步的精确分割 3. HRNet 联接上下文特征提取和自注意力机制模块 OCR的结合,相较于原始的单一 HRNet 模型的mIOU= 49.79%,提升到了 58.72%,增加了 8.93%,在贫瘠地类的分割上甚至提升了 42.06%,这表明加入 OCR模型后可以有效提升城市遥感图像语义分割的准确率()
1402深度学习数据处理
当前共39个项目more
×
寻找源码
源码描述
联系方式
提交