1. 项目描述:基于实验室产出的经化学药剂处理过的细胞内部结构显微图像,构建模式识别神经网络对高尔基体实现定位功能
2. 数据预处理:基于实验室原有的图像处理方法,开发程序对源图像进行背景移除、像素缩放等处理,并使用DFS算法对高尔基体及非高尔基体进行提取及标注,从而构建测试集与训练集
3. 模式识别网络搭建:使用CNN & DNN基于PyTorch搭建传统目标识别网络,同时进行训练及超参数调整(如调整网络结构,损失函数等),最终将模型的F1分数成功提升到81%,并将解决方案和操作说明交付实验室以提升图像分析效率
点击空白处退出提示












评论