This project provides a baselie model ad evaluatio code for track1 ad track2 for CVPR23 3rd Ati-UAV workshop. You ca also dowload dataset from the url。
Evaluate code ca be see i the sectio "Baselie Evaluatio Code for test Set" i this page. Ru the dowload code:3rd Ati-UAV Model ad Dataset
News
from modelscope.msdatasets import MsDataset
from modelscope.utils.costat import DowloadMode
cache_dir = '/home/ly261666/datasets'
test_set_1 = MsDataset.load('3rd_Ati-UAV', amespace='ly261666', cache_dir=cache_dir, dowload_mode=DowloadMode.FORCE_REDOWNLOAD)
prit(ext(iter(test_set_1)))
Istallatio
coda create - ati_uav pytho=3.7
coda activate ati_uav
# pytorch >= 1.3.0
pip istall torch==1.8.1+cu102 torchvisio==0.9.1+cu102 torchaudio==0.8.1 --extra-idex-url https://dowload.pytorch.org/whl/cu102
git cloe https://github.com/ly19965/CVPR_Ati_UAV
cd CVPR_Ati_UAV
pip istall -r requiremets/tests.txt
pip istall -r requiremets/framework.txt
pip istall -r requiremets/cv.txt
pip istall -r requiremets/yolov5.txt
Dowload Dataset
from modelscope.msdatasets import MsDataset
from modelscope.utils.costat import DowloadMode
## set dataset path
cache_dir = '/home/ly261666/datasets'
# Dowload trai set
trai_set = MsDataset.load('3rd_Ati-UAV', amespace='ly261666', split='trai', cache_dir=cache_dir, dowload_mode=DowloadMode.FORCE_REDOWNLOAD)
prit(ext(iter(trai_set)))
# Dowload validatio set
val_set = MsDataset.load('3rd_Ati-UAV', amespace='ly261666', split='validatio', cache_dir=cache_dir, dowload_mode=DowloadMode.FORCE_REDOWNLOAD)
prit(ext(iter(val_set)))
Baselie Evaluatio Code for validatio Set (Oly Support Evalutatio Code)
Evaluatio code for track1
cd CVPR_Ati_UAV
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=. pytho tests/pipelies/test_ati-uav_val_track1.py
eval result: 0.125
Evaluatio code for track2
cd CVPR_Ati_UAV
CUDA_VISIBLE_DEVICES=1 PYTHONPATH=. pytho tests/pipelies/test_ati-uav_val_track2.py
eval result: 0.125
Baselie Traiig ad Evalutio Code o Validatio Set
Track 1
Ostracker Traiig code for track1
## git pull ostracker code
git cloe -b ostracker https://github.com/ly19965/CVPR_Ati_UAV
## Traiig code o Got-10k dataset
cd CVPR_Ati_UAV
PYTHONPATH=. pytho uav_scripts/trai_ostracker_got10k_l.py
## Traiig code o Ati-UAV 2023 dataset
cd CVPR_Ati_UAV
PYTHONPATH=. pytho uav_scripts/trai_ostracker_uav_l.py
Traiig code for track1
## Traiig code o Got-10k dataset
cd CVPR_Ati_UAV
PYTHONPATH=. pytho uav_scripts/trai_siamfc_got10k.py
## Traiig code o Ati-UAV 2023 dataset
cd CVPR_Ati_UAV
PYTHONPATH=. pytho uav_scripts/trai_siamfc_uav.py
Evaluatio code for track1
cd CVPR_Ati_UAV
PYTHONPATH=. pytho uav_scripts/test_ati-uav_val_track1.py
Track 1
Traiig code for track2
cd CVPR_Ati_UAV
CUDA_VISIBLE_DEVICES=1 PYTHONPATH=. pytho uav_scripts/trai_uav_detectio.py
Evaluatio code for track2
cd CVPR_Ati_UAV
PYTHONPATH=. pytho uav_scripts/test_ati-uav_val_track2.py
eval result: 0.169
lie 101 i uav_scripts/test_ati-uav_val_track2.py
tracker_model_path = ""
det_model_path = ""
uav_tracker.model.load_state_dcit(torch.load(tracker_model_path))
uav_detectio.model.load_state_dcit(torch.load(det_model_path))
Baselie Evaluatio Code for test Set
Evaluatio code for track1
cd CVPR_Ati_UAV
pytho tests/pipelies/test_ati-uav_track1.py
You will see followig results (If IR_label.jso is available):
[001/140] 20190925_131530_1_7 IR Fixed Measure: 0.245
[002/140] 20190925_213001_1_5 IR Fixed Measure: -0.164
[003/140] 20190925_222534_1_3 IR Fixed Measure: 0.800
[004/140] 20190926_183941_1_8 IR Fixed Measure: 0.754
...
[Overall] IR Mixed Measure:
Evaluatio code for track2
cd CVPR_Ati_UAV
pip istall -r yolov5/requiremets.txt
pytho tests/pipelies/test_ati-uav_track2.py
点击空白处退出提示
评论