Erlangshen-MegatronBert-3.9B-Chinese

我要开发同款
匿名用户2024年07月31日
38阅读
所属分类ai、megatron-bert、pytorch、FewCLUE、NLU、BERT
开源地址https://modelscope.cn/models/Fengshenbang/Erlangshen-MegatronBert-3.9B-Chinese
授权协议Apache License 2.0

作品详情

Erlangshen-MegatronBert-3.9B-Chinese

简介 Brief Introduction

善于处理NLU任务,现在最大的,拥有39亿的中文BERT模型。

Good at solving NLU tasks, the largest Chinese BERT (39B) currently.

模型分类 Model Taxonomy

需求 Demand 任务 Task 系列 Series 模型 Model 参数 Parameter 额外 Extra
通用 General 自然语言理解 NLU 二郎神 Erlangshen MegatronBERT 3.9B 中文 Chinese

模型信息 Model Information

Erlangshen-MegatronBert-3.9B-Chinese是一个比Erlangshen-MegatronBert-1.3B拥有更多参数的版本(39亿)。我们遵循原来的预训练方式在悟道数据集(300G版本)上进行预训练。具体地,我们在预训练阶段中使用了封神框架大概花费了64张A100(40G)约30天。

Erlangshen-MegatronBert-3.9B-Chinese (3.9B) is a larger version of Erlangshen-MegatronBert-1.3B. By following the original instructions, we apply WuDao Corpora (300 GB version) as the pretraining dataset. Specifically, we use the fengshen framework in the pre-training phase which cost about 30 days with 64 A100 (40G) GPUs.

更多信息 More Information

IDEA研究院中文预训练模型二郎神登顶FewCLUE榜单

2021年11月10日,Erlangshen-MegatronBERT-1.3B在FewCLUE上取得第一。其中,它在CHIDF(成语填空)和TNEWS(新闻分类)子任务中的表现优于人类表现。此外,它在CHIDF(成语填空), CSLDCP(学科文献分类), OCNLI(自然语言推理)任务中均名列前茅。

On November 10, 2021, Erlangshen-MegatronBert-1.3B topped the FewCLUE benchmark. Among them, our Erlangshen outperformed human performance in CHIDF (idiom fill-in-the-blank) and TNEWS (news classification) subtasks. In addition, our Erlangshen ranked the top in CHIDF (idiom fill-in-the-blank), CSLDCP (subject literature classification), and OCNLI (natural language inference) tasks.

下游效果 Performance

下游中文任务的得分(没有做任何数据增强):

Scores on downstream Chinese tasks (without any data augmentation):

Model afqmc tnews iflytek ocnli cmnli wsc csl
roberta-wwm-ext-large 0.7514 0.5872 0.6152 0.777 0.814 0.8914 0.86
Erlangshen-MegatronBert-1.3B 0.7608 0.5996 0.6234 0.7917 0.81 0.9243 0.872
Erlangshen-MegatronBert-3.9B 0.7561 0.6048 0.6204 0.8278 0.8517 - -

示例代码

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

pipeline_ins = pipeline(
        'fill-mask',
        model='Fengshenbang/Erlangshen-MegatronBert-3.9B-Chinese',
        model_revision='v1.0.0'
)

print(pipeline_ins('生活的真谛是[MASK]。'))

引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的论文

If you are using the resource for your work, please cite the our paper:

@article{fengshenbang,
  author    = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}
}

也可以引用我们的网站:

You can also cite our website:

@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论