匿名用户2024年07月31日
32阅读
所属分类ai、llama、Pytorch
开源地址https://modelscope.cn/models/GeneZC/MiniMA-3B
授权协议Apache License 2.0

作品详情

MiniMA-3B

? arXiv | ? GitHub | ? HuggingFace-MiniMA | ? HuggingFace-MiniChat | ? ModelScope-MiniMA | ? ModelScope-MiniChat

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model distilled from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".

Establishing a new compute-performance pareto frontier.

teaser_a

The following is an example code snippet to use MiniMA-3B:

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

# MiniMA
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniMA-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniMA-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniMA-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

prompt = "Question: Sherrie tells the truth. Vernell says Sherrie tells the truth. Alexis says Vernell lies. Michaela says Alexis tells the truth. Elanor says Michaela tells the truth. Does Elanor tell the truth?\nAnswer: No\n\nQuestion: Kristian lies. Sherrie says Kristian lies. Delbert says Sherrie lies. Jerry says Delbert tells the truth. Shalonda says Jerry tells the truth. Does Shalonda tell the truth?\nAnswer: No\n\nQuestion: Vina tells the truth. Helene says Vina lies. Kandi says Helene tells the truth. Jamey says Kandi lies. Ka says Jamey lies. Does Ka tell the truth?\nAnswer: No\n\nQuestion: Christie tells the truth. Ka says Christie tells the truth. Delbert says Ka lies. Leda says Delbert tells the truth. Lorine says Leda tells the truth. Does Lorine tell the truth?\nAnswer:"
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "No"

Bibtex

@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={https://arxiv.org/abs/2311.07052}
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论