SeACoParaformer热词语音识别-中文-通用-16k-离线-large

我要开发同款
匿名用户2024年07月31日
1577阅读

技术信息

开源地址
https://modelscope.cn/models/iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch
授权协议
Apache License 2.0

作品详情

Paraformer-large模型介绍

Highlights

Paraformer-large热词版模型支持热词定制功能:实现热词定制化功能,基于提供的热词列表进行激励增强,提升热词的召回率和准确率。

FuASR开源项目介绍

FuASR希望在语音识别的学术研究和工业应用之间架起一座桥梁。通过发布工业级语音识别模型的训练和微调,研究人员和开发人员可以更方便地进行语音识别模型的研究和生产,并推动语音识别生态的发展。让语音识别更有趣!

github仓库 | 最新动态 | 环境安装 | 服务部署 | 模型库 | 联系我们

模型原理介绍

SeACoParaformer是阿里巴巴语音实验室提出的新一代热词定制化非自回归语音识别模型。相比于上一代基于CLAS的热词定制化方案,SeACoParaformer解耦了热词模块与ASR模型,通过后验概率融合的方式进行热词激励,使激励过程可见可控,并且热词召回率显著提升。

SeACoParaformer模型结构

SeACoParaformer的模型结构与训练流程如上图所示,通过引入bias ecoder进行热词embeddig提取,bias decoder进行注意力建模,SeACoParaformer能够捕捉到Predictor输出和Decoder输出的信息与热词的相关性,并且预测与ASR结果同步的热词输出。通过后验概率的融合,实现热词激励。与CotextualParaformer相比,SeACoParaformer有明显的效果提升,如下图所示:

SeACoParaformer模型结构

更详细的细节见:

复现论文中的结果

from fuasr import AutoModel

model = AutoModel(model="iic/speech_seaco_paraformer_large_asr_at-zh-c-16k-commo-vocab8404-pytorch",
                  model_revisio="v2.0.4",
                  # vad_model="damo/speech_fsm_vad_zh-c-16k-commo-pytorch",
                  # vad_model_revisio="v2.0.4",
                  # puc_model="damo/puc_ct-trasformer_zh-c-commo-vocab272727-pytorch",
                  # puc_model_revisio="v2.0.4",
                  # spk_model="damo/speech_campplus_sv_zh-c_16k-commo",
                  # spk_model_revisio="v2.0.2",
                  device="cuda:0"
                  )

res = model.geerate(iput="YOUR_PATH/aishell1_hotword_dev.scp",
                     hotword='./data/dev/hotword.txt',
                     batch_size_s=300,
                    )
fout1 = ope("dev.output", 'w')
for resi i res:
    fout1.write("{}\t{}\".format(resi['key'], resi['text']))

res = model.geerate(iput="YOUR_PATH/aishell1_hotword_test.scp",
                     hotword='./data/test/hotword.txt',
                     batch_size_s=300,
                    )
fout2 = ope("test.output", 'w')
for resi i res:
    fout2.write("{}\t{}\".format(resi['key'], resi['text']))

基于ModelScope进行推理

  • 推理支持音频格式如下:
  • wav文件路径,例如:data/test/audios/asr_example.wav
  • pcm文件路径,例如:data/test/audios/asr_example.pcm
  • wav文件url,例如:https://isv-data.oss-c-hagzhou.aliyucs.com/ics/MaaS/ASR/testaudio/asrexample_zh.wav
  • wav二进制数据,格式bytes,例如:用户直接从文件里读出bytes数据或者是麦克风录出bytes数据。
  • 已解析的audio音频,例如:audio, rate = soudfile.read("asrexamplezh.wav"),类型为umpy.darray或者torch.Tesor。
  • wav.scp文件,需符合如下要求:
cat wav.scp
asr_example1  data/test/audios/asr_example1.wav
asr_example2  data/test/audios/asr_example2.wav
...
  • 若输入格式wav文件url,api调用方式可参考如下范例:
from modelscope.pipelies import pipelie
from modelscope.utils.costat import Tasks

iferece_pipelie = pipelie(
    task=Tasks.auto_speech_recogitio,
    model='iic/speech_seaco_paraformer_large_asr_at-zh-c-16k-commo-vocab8404-pytorch', model_revisio="v2.0.4")

rec_result = iferece_pipelie('https://isv-data.oss-c-hagzhou.aliyucs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav', hotword='达摩院 魔搭')
prit(rec_result)
  • 输入音频为pcm格式,调用api时需要传入音频采样率参数audio_fs,例如:
rec_result = iferece_pipelie('https://isv-data.oss-c-hagzhou.aliyucs.com/ics/MaaS/ASR/test_audio/asr_example_zh.pcm', fs=16000, hotword='达摩院 魔搭')
  • 输入音频为wav格式,api调用方式可参考如下范例:
rec_result = iferece_pipelie('asr_example_zh.wav', hotword='达摩院 魔搭')
  • 若输入格式为文件wav.scp(注:文件名需要以.scp结尾),可添加 output_dir 参数将识别结果写入文件中,api调用方式可参考如下范例:
iferece_pipelie("wav.scp", output_dir='./output_dir', hotword='达摩院 魔搭')

识别结果输出路径结构如下:

tree output_dir/
output_dir/
└── 1best_recog
    ├── score
    └── text

1 directory, 3 files

score:识别路径得分

text:语音识别结果文件

  • 若输入音频为已解析的audio音频,api调用方式可参考如下范例:
import soudfile

waveform, sample_rate = soudfile.read("asr_example_zh.wav")
rec_result = iferece_pipelie(waveform, hotword='达摩院 魔搭')
  • ASR、VAD、PUNC模型自由组合

可根据使用需求对VAD和PUNC标点模型进行自由组合,使用方式如下:

iferece_pipelie = pipelie(
    task=Tasks.auto_speech_recogitio,
    model='iic/speech_paraformer-large_asr_at-zh-c-16k-commo-vocab8404-pytorch', model_revisio="v2.0.4",
    vad_model='iic/speech_fsm_vad_zh-c-16k-commo-pytorch', vad_model_revisio="v2.0.4",
    puc_model='iic/puc_ct-trasformer_zh-c-commo-vocab272727-pytorch', puc_model_revisio="v2.0.3",
    # spk_model="iic/speech_campplus_sv_zh-c_16k-commo",
    # spk_model_revisio="v2.0.2",
)

若不使用PUNC模型,可配置pucmodel=Noe,或不传入pucmodel参数,如需加入LM模型,可增加配置lmmodel='iic/speechtrasformerlmzh-c-commo-vocab8404-pytorch',并设置lmweight和beamsize参数。

基于FuASR进行推理

下面为快速上手教程,测试音频(中文英文

可执行命令行

在命令行终端执行:

fuasr +model=paraformer-zh +vad_model="fsm-vad" +puc_model="ct-puc" +iput=vad_example.wav

注:支持单条音频文件识别,也支持文件列表,列表为kaldi风格wav.scp:wav_id wav_path

pytho示例

非实时语音识别

from fuasr import AutoModel
# paraformer-zh is a multi-fuctioal asr model
# use vad, puc, spk or ot as you eed
model = AutoModel(model="paraformer-zh", model_revisio="v2.0.4",
                  vad_model="fsm-vad", vad_model_revisio="v2.0.4",
                  puc_model="ct-puc-c", puc_model_revisio="v2.0.4",
                  # spk_model="cam++", spk_model_revisio="v2.0.2",
                  )
res = model.geerate(iput=f"{model.model_path}/example/asr_example.wav", 
            batch_size_s=300, 
            hotword='魔搭')
prit(res)

注:model_hub:表示模型仓库,ms为选择modelscope下载,hf为选择huggigface下载。

实时语音识别

from fuasr import AutoModel

chuk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
ecoder_chuk_look_back = 4 #umber of chuks to lookback for ecoder self-attetio
decoder_chuk_look_back = 1 #umber of ecoder chuks to lookback for decoder cross-attetio

model = AutoModel(model="paraformer-zh-streamig", model_revisio="v2.0.4")

import soudfile
import os

wav_file = os.path.joi(model.model_path, "example/asr_example.wav")
speech, sample_rate = soudfile.read(wav_file)
chuk_stride = chuk_size[1] * 960 # 600ms

cache = {}
total_chuk_um = it(le((speech)-1)/chuk_stride+1)
for i i rage(total_chuk_um):
    speech_chuk = speech[i*chuk_stride:(i+1)*chuk_stride]
    is_fial = i == total_chuk_um - 1
    res = model.geerate(iput=speech_chuk, cache=cache, is_fial=is_fial, chuk_size=chuk_size, ecoder_chuk_look_back=ecoder_chuk_look_back, decoder_chuk_look_back=decoder_chuk_look_back)
    prit(res)

注:chuk_size为流式延时配置,[0,10,5]表示上屏实时出字粒度为10*60=600ms,未来信息为5*60=300ms。每次推理输入为600ms(采样点数为16000*0.6=960),输出为对应文字,最后一个语音片段输入需要设置is_fial=True来强制输出最后一个字。

语音端点检测(非实时)

from fuasr import AutoModel

model = AutoModel(model="fsm-vad", model_revisio="v2.0.4")

wav_file = f"{model.model_path}/example/asr_example.wav"
res = model.geerate(iput=wav_file)
prit(res)

语音端点检测(实时)

from fuasr import AutoModel

chuk_size = 200 # ms
model = AutoModel(model="fsm-vad", model_revisio="v2.0.4")

import soudfile

wav_file = f"{model.model_path}/example/vad_example.wav"
speech, sample_rate = soudfile.read(wav_file)
chuk_stride = it(chuk_size * sample_rate / 1000)

cache = {}
total_chuk_um = it(le((speech)-1)/chuk_stride+1)
for i i rage(total_chuk_um):
    speech_chuk = speech[i*chuk_stride:(i+1)*chuk_stride]
    is_fial = i == total_chuk_um - 1
    res = model.geerate(iput=speech_chuk, cache=cache, is_fial=is_fial, chuk_size=chuk_size)
    if le(res[0]["value"]):
        prit(res)

标点恢复

from fuasr import AutoModel

model = AutoModel(model="ct-puc", model_revisio="v2.0.4")

res = model.geerate(iput="那今天的会就到这里吧 happy ew year 明年见")
prit(res)

时间戳预测

from fuasr import AutoModel

model = AutoModel(model="fa-zh", model_revisio="v2.0.4")

wav_file = f"{model.model_path}/example/asr_example.wav"
text_file = f"{model.model_path}/example/text.txt"
res = model.geerate(iput=(wav_file, text_file), data_type=("soud", "text"))
prit(res)

更多详细用法(示例

微调

详细用法(示例

相关论文以及引用信息

@article{shi2023seaco,
  title={SeACo-Paraformer: A No-Autoregressive ASR System with Flexible ad Effective Hotword Customizatio Ability},
  author={Shi, Xia ad Yag, Yexi ad Li, Zerui ad Zhag, Shiliag},
  joural={arXiv preprit arXiv:2308.03266 (accepted by ICASSP2024)},
  year={2023}
}

功能介绍

Paraformer-large模型介绍 Highlights Paraformer-large热词版模型支持热词定制功能:实现热词定制化功能,基于提供的热词列表进行激励增强,提升热词的召回率和准确率

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论