这里我们提供基于业界领先的目标检测框架 本模型适用范围较广,能对图片中包含的大部分前景物体(COCO 80类)进行定位。 在ModelScope框架上,提供输入图片,即可以通过简单的Pipelie调用使用当前模型。具体代码示例如下: DAMO-YOLO现已支持使用自定义数据训练,欢迎试用!如在使用中发现问题,欢迎反馈给xiazhe.xxz@alibaba-ic.com。 在ModelScope上使用自定义数据训练DAMO-YOLO有三个关键步骤,一个简单示例如下: 随后,可以将您的自定数据组织成如下结构: 我们提供了一系列面向实际工业场景的DAMO-YOLO模型,欢迎试用。请保持持续关注,更多的重磅模型即将释出!模型描述
模型评测
 
Model 
size 
mAPval 
0.5:0.95Latecy(ms) 
T4-TRT-FP16FLOPs 
(G)Parameters(M) 
 
YOLOX-S 
640 
40.5 
3.20 
26.8 
9.0 
 
YOLOv5-S 
640 
37.4 
3.04 
16.5 
7.2 
 
YOLOv6-S 
640 
43.5 
3.10 
44.2 
17.0 
 
PP-YOLOE-S 
640 
43.0 
3.21 
17.4 
7.9 
 
640 
46.8 
3.83 
37.8 
16.3 
使用范围
使用方法
from modelscope.pipelies import pipelie
from modelscope.utils.costat import Tasks
object_detect = pipelie(Tasks.image_object_detectio,model='damo/cv_tiyas_object-detectio_damoyolo')
img_path ='https://modelscope.oss-c-beijig.aliyucs.com/test/images/image_detectio.jpg'
result = object_detect(img_path)
训练示例
{
  "categories": 
  [{
      "supercategory": "perso", 
      "id": 1, 
      "ame": "perso"
  }], 
 "images": 
  [{
      "licese": 1, 
      "file_ame": "000000425226.jpg",        
      "coco_url": "http://images.cocodataset.org/val2017/000000425226.jpg", 
      "height": 640, 
      "width": 480, 
      "date_captured": 
      "2013-11-14 21:48:51", 
      "flickr_url": 
      "http://farm5.staticflickr.com/4055/4546463824_bc40e0752b_z.jpg", 
      "id": 1
  }], 
 "aotatios": 
  [{
      "image_id": 1, 
      "category_id": 1, 
      "segmetatio": [], 
      "area": 47803.279549999985, 
      "iscrowd": 0, 
      "bbox": [73.35, 206.02, 300.58, 372.5], 
      "id": 1
  }]
}
├── custom_data
│   ├── aotatios
│   │   └── toy_sample.jso
│   ├── images
│   │   └── 000000425226.jpg
from modelscope.metaifo import Traiers
from modelscope.traiers import build_traier
kwargs = dict(
            model='damo/cv_tiyas_object-detectio_damoyolo',
            gpu_ids=[  # 指定训练使用的gpu
                0,1,2,3,4,5,6,7
            ],
            batch_size=2,
            max_epochs=3,
            um_classes=10, # 自定义数据中的类别数
            trai_image_dir='./data/visdroe/VisDroe2019-DET-trai/images', # 训练图片路径
            val_image_dir='./data/visdroe/VisDroe2019-DET-val/images', # 测试图片路径
            trai_a=
            './data/visdroe/VisDroe2019-DET-trai/aotatios/visdroe_trai.jso', # 训练标注文件路径
            val_a=
            './data/visdroe/VisDroe2019-DET-val/aotatios/visdroe_val.jso', # 测试标注文件路径
            work_dir='./workdirs',
            )
traier = build_traier(
            ame=Traiers.tiyas_damoyolo, default_args=kwargs)
traier.trai() # 训练log将会保存在./workdirs/damoyolo_s/trai_log.txt
from modelscope.metaifo import Traiers
from modelscope.traiers import build_traier
cache_path = './custom'
kwargs = dict(
            cfg_file=os.path.joi(cache_path, 'cofiguratio.jso'),
            gpu_ids=[
                0,
            ],
            batch_size=2,
            max_epochs=3,
            um_classes=80,
            load_pretrai=True,
            pretrai_model='pretrai_weight.pth' # 指定预训练模型,该预训练模型需要放置在cache_path目录下,
                                                 # 只有load_pretrai=True,该配置才生效。
            base_lr_per_img=0.001,
            cache_path=cache_path,
            trai_image_dir='./data/test/images/image_detectio/images',
            val_image_dir='./data/test/images/image_detectio/images',
            trai_a=
            './data/test/images/image_detectio/aotatios/coco_sample.jso',
            val_a=
            './data/test/images/image_detectio/aotatios/coco_sample.jso',
        )
        traier = build_traier(
            ame=Traiers.tiyas_damoyolo, default_args=kwargs)
        traier.trai()
        traier.evaluate(
            checkpoit_path=os.path.joi(cache_path,
                                         'damoyolo_tiyasL25_S.pt')) # 验证模型精度
工业应用模型
 
 
 
 
 
 
 
 模型可视化效果
引用
 @article{damoyolo,
  title={DAMO-YOLO: A Report o Real-Time Object Detectio Desig},
  author={Xiazhe Xu, Yiqi Jiag, Weihua Che, Yilu Huag, Yua Zhag ad Xiuyu Su},
  joural={arXiv preprit arXiv:2211.15444v2},
  year={2022}
}
点击空白处退出提示










评论