emotion_diff

我要开发同款
匿名用户2024年07月31日
31阅读
所属分类aipytorch
开源地址https://modelscope.cn/models/jiuyuefeixiang/emotion_diff

作品详情

Emotion_diff模型

简介:本模型是基于swift框架,对qwen-7b-chat模型进行微调获得的。模型的功能是评估用户输入的一段话,模型能够准确给出这句话是消极的还是积极的。

1.实验环境

swift框架 ubuntu 22.04 cuda 12.0.1 python 3.10 pytorch 2.1.2

2.训练方法

数据集:jdsentimentzh

微调的模型:qwen-7b-chat

3.训练的步骤

3.1使用modelscope上的免费的GPU算力

3.2启动后进入命令行界面

3.3安装swift

通过以下命令安装

git clone https://github.com/modelscope/swift.git
cd swift
pip install -e .[llm]

4.微调代码

import os

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import torch

from swift.llm import (

DatasetName, InferArguments, ModelType, SftArguments,

infer_main, sft_main, app_ui_main, merge_lora_main

)

model_type = ModelType.qwen_7b_chat

sft_args = SftArguments(

model_type=model_type,

train_dataset_sample=2000,

dataset=[DatasetName.jd_sentiment_zh],

output_dir='output')

result = sft_main(sft_args)

best_model_checkpoint = result['best_model_checkpoint']

print(f'best_model_checkpoint: {best_model_checkpoint}')

torch.cuda.empty_cache()

infer_args = InferArguments(

ckpt_dir=best_model_checkpoint,

show_dataset_sample=10)

# merge_lora_main(infer_args)

result = infer_main(infer_args)

5.示例代码

import os

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import torch

from swift.llm import (

DatasetName, InferArguments, ModelType, SftArguments,

infer_main, sft_main, app_ui_main, merge_lora_main

)

best_model_checkpoint = "/mnt/workspace/output/qwen-7b-chat/v0-20240123-102915/checkpoint-100"

print(f'best_model_checkpoint: {best_model_checkpoint}')

torch.cuda.empty_cache()

infer_args = InferArguments(

ckpt_dir=best_model_checkpoint,

show_dataset_sample=10)

# merge_lora_main(infer_args)

infer_args.system="You are an expert in analyzing emotions. The user will give some Chinese or English sentences, and you only need to answer whether the emotion in the sentence is 'positive' or 'nagetive'. For example, the user inputs {Quality is very good, the material is very good, the workmanship is exquisite, the style is nice, the clothes are very beautiful}. Your answer is {positive}. Besides the emotional type of the sentence (positive, negative), you don't need to answer any other redundant words."

print(f"infer_args-->{infer_args.system}")

result = infer_main(infer_args)

torch.cuda.empty_cache()

6.结果

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论