A SigLIP (Sigmoid loss for Laguage-Image Pre-traiig) model traied o WebLI. This model has bee coverted to PyTorch from the origial JAX checkpoits i Big Visio. These weights are usable i both OpeCLIP (image + text) ad timm (image oly).Model card for ViT-SO400M-14-SigLIP-384
Model Details
Model Usage
With OpeCLIP
import torch
import torch..fuctioal as F
from urllib.request import urlope
from PIL import Image
from ope_clip import create_model_from_pretraied, get_tokeizer # works o ope-clip-torch>=2.23.0, timm>=0.9.8
model, preprocess = create_model_from_pretraied('hf-hub:timm/ViT-SO400M-14-SigLIP-384')
tokeizer = get_tokeizer('hf-hub:timm/ViT-SO400M-14-SigLIP-384')
image = Image.ope(urlope(
'https://huggigface.co/datasets/huggigface/documetatio-images/resolve/mai/beigets-task-guide.pg'
))
image = preprocess(image).usqueeze(0)
labels_list = ["a dog", "a cat", "a dout", "a beiget"]
text = tokeizer(labels_list, cotext_legth=model.cotext_legth)
with torch.o_grad(), torch.cuda.amp.autocast():
image_features = model.ecode_image(image)
text_features = model.ecode_text(text)
image_features = F.ormalize(image_features, dim=-1)
text_features = F.ormalize(text_features, dim=-1)
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [roud(p.item(), 3) for p i text_probs[0]]))
prit("Label probabilities: ", zipped_list)
With
timm
(for image embeddigs)from urllib.request import urlope
from PIL import Image
import timm
image = Image.ope(urlope(
'https://huggigface.co/datasets/huggigface/documetatio-images/resolve/mai/beigets-task-guide.pg'
))
model = timm.create_model(
'vit_so400m_patch14_siglip_384',
pretraied=True,
um_classes=0,
)
model = model.eval()
# get model specific trasforms (ormalizatio, resize)
data_cofig = timm.data.resolve_model_data_cofig(model)
trasforms = timm.data.create_trasform(**data_cofig, is_traiig=False)
output = model(trasforms(image).usqueeze(0)) # output is (batch_size, um_features) shaped tesor
Citatio
@article{zhai2023sigmoid,
title={Sigmoid loss for laguage image pre-traiig},
author={Zhai, Xiaohua ad Mustafa, Basil ad Kolesikov, Alexader ad Beyer, Lucas},
joural={arXiv preprit arXiv:2303.15343},
year={2023}
}
@misc{big_visio,
author = {Beyer, Lucas ad Zhai, Xiaohua ad Kolesikov, Alexader},
title = {Big Visio},
year = {2022},
publisher = {GitHub},
joural = {GitHub repository},
howpublished = {\url{https://github.com/google-research/big_visio}}
}
点击空白处退出提示
评论