匿名用户2024年07月31日
37阅读
所属分类aiPytorch、sd-community、fast-sdxl、fast、hyper、lcm、turbo、lightning、sdxl-flash
开源地址https://modelscope.cn/models/cjc1887415157/sdxl-flash
授权协议creativeml-openrail-m

作品详情

SDXL Flash in collaboration with Project Fluently

preview

Introducing the new fast model SDXL Flash, we learned that all fast XL models work fast, but the quality decreases, and we also made a fast model, but it is not as fast as LCM, Turbo, Lightning and Hyper, but the quality is higher. Below you will see the study with steps and cfg.

Steps and CFG (Guidance)

steps_and_cfg_grid_test

Optimal settings

  • Steps: 6-9
  • CFG Scale: 2.5-3.5
  • Sampler: DPM++ SDE

Diffusers usage

pip install torch diffusers
import torch
from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler

# Load model.
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", torch_dtype=torch.float16, variant="fp16").to("cuda")

# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

# Image generation.
pipe("a happy dog, sunny day, realism", num_inference_steps=7, guidance_scale=3).images[0].save("output.png")
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论