重新以resnet50(flops与ResNet相同,且结构较为简单)为基准( 76.1% ),以swin的训练技巧训练resnet50,作为baseline,进行网络训练
并且逐步加入结构变化与tricks,以接近transformer,包括
macro design,
ResNeXt,
inverted bottleneck,
large kernel size,
various layer-wise micro designs
点击空白处退出提示
重新以resnet50(flops与ResNet相同,且结构较为简单)为基准( 76.1% ),以swin的训练技巧训练resnet50,作为baseline,进行网络训练
并且逐步加入结构变化与tricks,以接近transformer,包括
macro design,
ResNeXt,
inverted bottleneck,
large kernel size,
various layer-wise micro designs
评论