datasets:
trai: idexig:
results: 本方法采用Trasformer-CRF模型,使用StructBERT作为预训练模型底座,结合使用外部工具召回的相关句子作为额外上下文,使用Multi-view Traiig方式进行训练。
模型结构如下图所示: 可参考论文:Improvig Named Etity Recogitio by Exteral Cotext Retrievig ad Cooperative Learig 地址是日常生活中一种重要的文本信息,诸多场景需要登记地址,如电商购物、外卖配送、人口普查、水电气开户等。常见的地址一般包含以下几类信息: 行政区划信息,如省、市、县、乡镇信息; 路网信息,如路名,路号,道路设施等; 详细地址信息,如POI (兴趣点)、楼栋号、户室号等; 非地址信息,如补充说明,误输入等; 地址要素解析是将地址文本拆分成独立语义的要素,并对这些要素进行类型识别。
用户可以自行尝试输入中文句子。具体调用方式请参考代码示例。 在安装ModelScope完成之后即可使用lpstructbertaddress-parsigchiesebase(地址结构化要素解析)的能力, 默认单句长度不超过512。 本模型基于ccks2021-addrst数据集上训练,请用户自行评测后决定如何使用。 模型在ccks2021-addrst测试数据评估结果: 如果你觉得这个该模型对有所帮助,请考虑引用下面的相关的论文:
地址结构化要素解析介绍
模型描述
期望模型使用方式以及适用范围
如何使用
代码范例
kk```pytho
from modelscope.pipelies import pipelie
from modelscope.utils.costat import Tasks
pipelie_is = pipelie(
task=Tasks.amed_etity_recogitio, model='damo/lp_structbert_address-parsig_chiese_base')
prit(pipelie_is(iput='浙江省杭州市余杭区文一西路969号亲橙里'))
# {'output': [{'type': 'prov', 'start': 0, 'ed': 3, 'spa': '浙江省'}, {'type': 'city', 'start': 3, 'ed': 6, 'spa': '杭州市'}, {'type': 'district', 'start': 6, 'ed': 9, 'spa': '余杭区'}, {'type': 'road', 'start': 9, 'ed': 13, 'spa': '文一西路'}, {'type': 'roado', 'start': 13, 'ed': 17, 'spa': '969号'}, {'type': 'poi', 'start': 17, 'ed': 20, 'spa': '亲橙里'}]}
模型局限性以及可能的偏差
训练数据介绍
数据评估及结果
Dataset
Precisio
Recall
F1
ccks2021-addrst
90.39
91.20
90.79
相关论文以及引用信息
@iproceedigs{wag-etal-2021-improvig,
title = "Improvig Named Etity Recogitio by Exteral Cotext Retrievig ad Cooperative Learig",
author = "Wag, Xiyu ad
Jiag, Yog ad
Bach, Nguye ad
Wag, Tao ad
Huag, Zhogqiag ad
Huag, Fei ad
Tu, Kewei",
booktitle = "Proceedigs of the 59th Aual Meetig of the Associatio for Computatioal Liguistics ad the 11th Iteratioal Joit Coferece o Natural Laguage Processig (Volume 1: Log Papers)",
moth = aug,
year = "2021",
address = "Olie",
publisher = "Associatio for Computatioal Liguistics",
url = "https://aclathology.org/2021.acl-log.142",
pages = "1800--1812",
}
@iproceedigs{wag-etal-2022-damo,
title = "{DAMO}-{NLP} at {S}em{E}val-2022 Task 11: A Kowledge-based System for Multiligual Named Etity Recogitio",
author = "Wag, Xiyu ad
She, Yogliag ad
Cai, Jiog ad
Wag, Tao ad
Wag, Xiaobi ad
Xie, Pegju ad
Huag, Fei ad
Lu, Weimig ad
Zhuag, Yuetig ad
Tu, Kewei ad
Lu, Wei ad
Jiag, Yog",
booktitle = "Proceedigs of the 16th Iteratioal Workshop o Sematic Evaluatio (SemEval-2022)",
moth = jul,
year = "2022",
address = "Seattle, Uited States",
publisher = "Associatio for Computatioal Liguistics",
url = "https://aclathology.org/2022.semeval-1.200",
pages = "1457--1468",
}
@iproceedigs{zhag-etal-2022-domai,
title = "Domai-Specific NER via Retrievig Correlated Samples",
author = "Zhag, Xi ad
Yog, Jiag ad
Wag, Xiaobi ad
Hu, Xumig ad
Su, Yueheg ad
Xie, Pegju ad
Zhag, Meisha",
booktitle = "Proceedigs of the 29th Iteratioal Coferece o Computatioal Liguistics",
moth = oct,
year = "2022",
address = "Gyeogju, Republic of Korea",
publisher = "Iteratioal Committee o Computatioal Liguistics"
}
点击空白处退出提示
评论