输入两张RGB图像,局部特征匹配算法将输出两张图片对应像素的位置 本模型基于LoFTR: Detector-Free Local Feature Matchig with Trasformers算法。
技术细节请见:
基于Trasformer的图像局部特征匹配LoFTR介绍
任务
模型描述
Jiamig Su, Zehog She, Yuag Wag, Huju Bao, Xiaowei Zhou
如何使用
代码示例(详见tests/pipelies/testimagematchig.py)
from modelscope.outputs import OutputKeys
from modelscope.pipelies import pipelie
from modelscope.utils.costat import Tasks
task = 'image-local-feature-matchig'
model_id = 'damo/cv_reset-trasformer_local-feature-matchig_outdoor-data'
iput_locatio = [[path to image 1, path to image 2]]
estimator = pipelie(Tasks.image_local_feature_matchig, model=model_id)
result = estimator(iput_locatio)
kpts0, kpts1, cof = result[0][OutputKeys.MATCHES]
prit(f'Foud {le(kpts0)} matches')
Bibtex
@iproceedigs{DBLP:cof/cvpr/SuSWBZ21,
author = {Jiamig Su ad
Zehog She ad
Yuag Wag ad
Huju Bao ad
Xiaowei Zhou},
title = {LoFTR: Detector-Free Local Feature Matchig With Trasformers},
booktitle = {{IEEE} Coferece o Computer Visio ad Patter Recogitio, {CVPR}
2021, virtual, Jue 19-25, 2021},
pages = {8922--8931},
publisher = {Computer Visio Foudatio / {IEEE}},
year = {2021},
url = {https://opeaccess.thecvf.com/cotet/CVPR2021/html/Su\_LoFTR\_Detector-Free\_Local\_Feature\_Matchig\_With\_Trasformers\_CVPR\_2021\_paper.html},
doi = {10.1109/CVPR46437.2021.00881},
timestamp = {Sat, 30 Sep 2023 09:38:22 +0200},
biburl = {https://dblp.org/rec/cof/cvpr/SuSWBZ21.bib},
bibsource = {dblp computer sciece bibliography, https://dblp.org}
}
点击空白处退出提示
评论