基于Transformer的图像局部特征匹配LoFTR介绍
任务
输入两张RGB图像,局部特征匹配算法将输出两张图片对应像素的位置
模型描述
本模型基于LoFTR: Detector-Free Local Feature Matching with Transformers算法。 技术细节请见:
LoFTR: Detector-Free Local Feature Matching with Transformers
Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, Xiaowei Zhou
CVPR 2021
如何使用
代码示例(详见tests/pipelines/testimagematching.py)
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
task = 'image-local-feature-matching'
model_id = 'damo/cv_resnet-transformer_local-feature-matching_outdoor-data'
input_location = [[path to image 1, path to image 2]]
estimator = pipeline(Tasks.image_local_feature_matching, model=model_id)
result = estimator(input_location)
kpts0, kpts1, conf = result[0][OutputKeys.MATCHES]
print(f'Found {len(kpts0)} matches')
Bibtex
@inproceedings{DBLP:conf/cvpr/SunSWBZ21,
author = {Jiaming Sun and
Zehong Shen and
Yuang Wang and
Hujun Bao and
Xiaowei Zhou},
title = {LoFTR: Detector-Free Local Feature Matching With Transformers},
booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR}
2021, virtual, June 19-25, 2021},
pages = {8922--8931},
publisher = {Computer Vision Foundation / {IEEE}},
year = {2021},
url = {https://openaccess.thecvf.com/content/CVPR2021/html/Sun\_LoFTR\_Detector-Free\_Local\_Feature\_Matching\_With\_Transformers\_CVPR\_2021\_paper.html},
doi = {10.1109/CVPR46437.2021.00881},
timestamp = {Sat, 30 Sep 2023 09:38:22 +0200},
biburl = {https://dblp.org/rec/conf/cvpr/SunSWBZ21.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
评论