Magicoder-S-DS-6.7B

我要开发同款
匿名用户2024年07月31日
25阅读
所属分类ai
开源地址https://modelscope.cn/models/meteor199/Magicoder-S-DS-6.7B
授权协议other

作品详情

? Magicoder: Source Code Is All You Need

Refer to our GitHub repo ise-uiuc/magicoder for an up-to-date introduction to the Magicoder family!

  • ?Magicoder is a model family empowered by ?OSS-Instruct, a novel approach to enlightening LLMs with open-source code snippets for generating low-bias and high-quality instruction data for code.
  • ?OSS-Instruct mitigates the inherent bias of the LLM-synthesized instruction data by empowering them with a wealth of open-source references to produce more diverse, realistic, and controllable data.

Overview of Result

Model Details

Model Description

Model Sources

Training Data

Uses

Direct Use

Magicoders are designed and best suited for coding tasks.

Out-of-Scope Use

Magicoders may not work well in non-coding tasks.

Bias, Risks, and Limitations

Magicoders may sometimes make errors, producing misleading contents, or struggle to manage tasks that are not related to coding.

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

How to Get Started with the Model

Use the code below to get started with the model. Make sure you installed the transformers library.

from transformers import pipeline
import torch

MAGICODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.

@@ Instruction
{instruction}

@@ Response
"""

instruction = <Your code instruction here>

prompt = MAGICODER_PROMPT.format(instruction=instruction)
generator = pipeline(
    model="ise-uiuc/Magicoder-S-DS-6.7B",
    task="text-generation",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
result = generator(prompt, max_length=1024, num_return_sequences=1, temperature=0.0)
print(result[0]["generated_text"])

Technical Details

Refer to our GitHub repo: ise-uiuc/magicoder.

Citation

@misc{magicoder,
    title={Magicoder: Source Code Is All You Need}, 
    author={Yuxiang Wei and Zhe Wang and Jiawei Liu and Yifeng Ding and Lingming Zhang},
    year={2023},
    eprint={2312.02120},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Acknowledgements

Important Note

Magicoder models are trained on the synthetic data generated by OpenAI models. Please pay attention to OpenAI's terms of use when using the models and the datasets. Magicoders will not compete with OpenAI's commercial products.

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论