NL2SQL-StarCoder-15B

我要开发同款
匿名用户2024年07月31日
34阅读
所属分类ai、gpt_bigcode、Pytorch
开源地址https://modelscope.cn/models/iic/NL2SQL-StarCoder-15B
授权协议other

作品详情

Model Card for NL2SQL-StarCoder-15B

模型介绍

NL2SQL-StarCoder-15B 是在基础模型 StarCoder 上通过 QLoRA 对自然语言生成SQL任务进行微调的 15B Code-LLM。

Requirements

  • python>=3.8
  • pytorch>=2.0.0
  • transformers==4.32.0
  • CUDA 11.4

推理数据格式

推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式:

"""
<|user|>
/* Given the following database schema: */
CREATE TABLE "table_name" (
"col1" int,
...
...
)

/* Write a sql to answer the following question: {问题} */
<|assistant|>

sql {输出SQL}

"""

快速开始

import torch
from modelscope import snapshot_download, AutoModelForCausalLM, AutoTokenizer,GenerationConfig
model_dir = snapshot_download("iic/NL2SQL-StarCoder-15B")
tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", 
                              trust_remote_code=True, torch_dtype=torch.float16)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<fim_pad>")
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.pad_token = "<fim_pad>"
tokenizer.eos_token = "<|endoftext|>"

model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", 
                              trust_remote_code=True, torch_dtype=torch.float16)
model.eval()

text = '<|user|>\n/* Given the following database schema: */\nCREATE TABLE "singer" (\n"Singer_ID" int,\n"Name" text,\n"Country" text,\n"Song_Name" text,\n"Song_release_year" text,\n"Age" int,\n"Is_male" bool,\nPRIMARY KEY ("Singer_ID")\n)\n\n/* Write a sql to answer the following question: Show countries where a singer above age 40 and a singer below 30 are from. */<|end|>\n'
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
outputs = model.generate(
        inputs=inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        max_new_tokens=512,
        top_p=0.95,
        temperature=0.1,
        do_sample=False,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id
    )
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(gen_text)
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论