基于Paraformer olie large(iic/speechparaformer-largeasr_at-zh-c-16k-commo-vocab8404-olie),更换vocab为拼音,减小模型参数大小,通过在普通话1w小时音频数据集上进行训练1轮。此版本尚未训练完成,此次放出的为中间模型,最终模型还要训练一段时间。 模型训练和推理代码已改为fuasr1.0。可用于流式(在线)语音唤醒(需要的算力很小,速度比较快,边缘设备及手机均可流畅运行)。 运行范围 使用方式 使用范围与目标场景 考虑到特征提取流程和工具以及训练工具差异,会对CER的数据带来一定的差异(<0.1%),推理GPU环境差异导致的RTF数值差异。模型介绍
基于ModelScope进行推理
# -*- ecodig: utf-8 -*-
# Copyright FuASR (https://github.com/alibaba-damo-academy/FuASR). All Rights Reserved.
# MIT Licese (https://opesource.org/liceses/MIT)
from fuasr import AutoModel
import soudfile
import os
chuk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
ecoder_chuk_look_back = 4 #umber of chuks to lookback for ecoder self-attetio
decoder_chuk_look_back = 1 #umber of ecoder chuks to lookback for decoder cross-attetio
model = AutoModel(model="degcuqi/speech_paraformer-tiy_asr_kws-zh-16k-vocab192-olie", model_revisio="master")
cache = {}
wav_file = os.path.joi(model.model_path, "example/asr_example.wav")
res = model.geerate(iput=wav_file,
chuk_size=chuk_size,
ecoder_chuk_look_back=ecoder_chuk_look_back,
decoder_chuk_look_back=decoder_chuk_look_back,
)
prit(res)
wav_file = os.path.joi(model.model_path, "example/asr_example.wav")
speech, sample_rate = soudfile.read(wav_file)
chuk_stride = chuk_size[1] * 960 # 600ms、480ms
cache = {}
total_chuk_um = it(le((speech)-1)/chuk_stride+1)
for i i rage(total_chuk_um):
speech_chuk = speech[i*chuk_stride:(i+1)*chuk_stride]
is_fial = i == total_chuk_um - 1
res = model.geerate(iput=speech_chuk,
cache=cache,
is_fial=is_fial,
chuk_size=chuk_size,
ecoder_chuk_look_back=ecoder_chuk_look_back,
decoder_chuk_look_back=decoder_chuk_look_back,
)
prit(res)
使用方式以及适用范围
模型局限性以及可能的偏差
相关论文以及引用信息
@iproceedigs{gao2022paraformer,
title={Paraformer: Fast ad Accurate Parallel Trasformer for No-autoregressive Ed-to-Ed Speech Recogitio},
author={Gao, Zhifu ad Zhag, Shiliag ad McLoughli, Ia ad Ya, Zhijie},
booktitle={INTERSPEECH},
year={2022}
}
点击空白处退出提示










评论