python 3.10编译好的whl文件

我要开发同款
匿名用户2024年07月31日
48阅读
所属分类ai、其他
开源地址https://modelscope.cn/models/cjc1887415157/pre_built_whl

作品详情

Triton

This is the development repository of Triton, a language and compiler for writing highly efficient custom Deep-Learning primitives. The aim of Triton is to provide an open-source environment to write fast code at higher productivity than CUDA, but also with higher flexibility than other existing DSLs.

The foundations of this project are described in the following MAPL2019 publication: Triton: An Intermediate Language and Compiler for Tiled Neural Network Computations. Please consider citing this work if you use Triton!

The official documentation contains installation instructions and tutorials.

Quick Installation

You can install the latest stable release of Triton from pip:

pip install triton

Binary wheels are available for CPython 3.7-3.11 and PyPy 3.8-3.9.

And the latest nightly release:

pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly

Install from source

git clone https://github.com/openai/triton.git;
cd triton;

pip install ninja cmake wheel; # build-time dependencies
pip install -e python

Or with a virtualenv:

git clone https://github.com/openai/triton.git;
cd triton;

python -m venv .venv --prompt triton;
source .venv/bin/activate;

pip install ninja cmake wheel; # build-time dependencies
pip install -e python

Building with a custom LLVM

Triton uses LLVM to generate code for GPUs and CPUs. Normally, the Triton build downloads a prebuilt LLVM, but you can also build LLVM from source and use that.

LLVM does not have a stable API, so the Triton build will not work at an arbitrary LLVM version.

  1. Find the version of LLVM that Triton builds against. Check cmake/llvm-hash.txt to see the current version. For example, if it says: 49af6502c6dcb4a7f7520178bd14df396f78240c

    This means that the version of Triton you have builds against LLVM 49af6502.

  2. git checkout LLVM at this revision. Optionally, make additional modifications to LLVM.

  3. Build LLVM. For example, you might run

    $ cd $HOME/llvm-project # your clone of LLVM. $ mkdir build $ cd build $ cmake -G Ninja -DCMAKEBUILDTYPE=Release -DLLVMENABLEASSERTIONS=ON ../llvm -DLLVMENABLEPROJECTS="mlir;llvm" $ ninja

  4. Grab a snack, this will take a while.

  5. Build Triton as above, but set the following environment variables.

    # Modify as appropriate to point to your LLVM build. $ export LLVMBUILDDIR=$HOME/llvm-project/build

    $ cd $ LLVMINCLUDEDIRS=$LLVMBUILDDIR/include \ LLVMLIBRARYDIR=$LLVMBUILDDIR/lib \ LLVMSYSPATH=$LLVMBUILD_DIR \ pip install -e python

Tips for building

  • Set TRITON_BUILD_WITH_CLANG_LLD=true as an environment variable to use clang and lld. lld in particular results in faster builds.

  • Set TRITON_BUILD_WITH_CCACHE=true to build with ccache.

  • Pass --no-build-isolation to pip install to make nop builds faster. Without this, every invocation of pip install uses a different symlink to cmake, and this forces ninja to rebuild most of the .a files.

  • vscode intellisense has some difficulty figuring out how to build Triton's C++ (probably because, in our build, users don't invoke cmake directly, but instead use setup.py). Teach vscode how to compile Triton as follows.

    • Do a local build.
    • Get the full path to the compile_commands.json file produced by the build: find python/build -name 'compile_commands.json | xargs readlink -f'
    • In vscode, install the C/C++ extension, then open the command palette (Shift + Command + P on Mac, or Shift + Ctrl + P on Windows/Linux) and open C/C++: Edit Configurations (UI).
    • Open "Advanced Settings" and paste the full path to compile_commands.json into the "Compile Commands" textbox.

Running tests

There currently isn't a turnkey way to run all the Triton tests, but you can follow the following recipe.

# One-time setup.  Note we have to reinstall local Triton because torch
# overwrites it with the public version.
$ pip install scipy numpy torch pytest lit && pip install -e python

# Run Python tests using your local GPU.
$ python3 -m pytest python/test/unit

# Move to builddir.  Fill in <...> with the full path, e.g.
# `cmake.linux-x86_64-cpython-3.11`.
$ cd python/build/cmake<...>

# Run C++ unit tests.
$ ninja test

# Run lit tests.
$ lit test

You may find it helpful to make a symlink to the builddir and tell your local git to ignore it.

$ ln -s python/build/cmake<...> build
$ echo build >> .git/info/exclude

Then you can e.g. rebuild and run lit with the following command.

$ ninja -C build && ( cd build ; lit test )

Changelog

Version 2.0 is out! New features include:

  • Many, many bug fixes
  • Performance improvements
  • Backend rewritten to use MLIR
  • Support for kernels that contain back-to-back matmuls (e.g., flash attention)

Contributing

Community contributions are more than welcome, whether it be to fix bugs or to add new features at github. For more detailed instructions, please visit our contributor's guide.

Compatibility

Supported Platforms:

  • Linux

Supported Hardware:

  • NVIDIA GPUs (Compute Capability 7.0+)
  • Under development: AMD GPUs, CPUs
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论