A RegNetX-3.2GF image classificatio model. Pretraied o ImageNet-1k by torchvisio cotributors (see ImageNet1K-V2 weight details https://github.com/pytorch/visio/issues/3995#ew-recipe). The Explore the dataset ad rutime metrics of this model i timm model results. For the compariso summary below, the rai1k, ra3i1k, chi1k, sw, ad lio_ tagged weights are traied i Model card for regetx032.tv2i1k
timm
RegNet implemetatio icludes a umber of ehacemets ot preset i other implemetatios, icludig:
Model Details
Model Usage
Image Classificatio
from urllib.request import urlope
from PIL import Image
import timm
img = Image.ope(urlope(
'https://huggigface.co/datasets/huggigface/documetatio-images/resolve/mai/beigets-task-guide.pg'
))
model = timm.create_model('regetx_032.tv2_i1k', pretraied=True)
model = model.eval()
# get model specific trasforms (ormalizatio, resize)
data_cofig = timm.data.resolve_model_data_cofig(model)
trasforms = timm.data.create_trasform(**data_cofig, is_traiig=False)
output = model(trasforms(img).usqueeze(0)) # usqueeze sigle image ito batch of 1
top5_probabilities, top5_class_idices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extractio
from urllib.request import urlope
from PIL import Image
import timm
img = Image.ope(urlope(
'https://huggigface.co/datasets/huggigface/documetatio-images/resolve/mai/beigets-task-guide.pg'
))
model = timm.create_model(
'regetx_032.tv2_i1k',
pretraied=True,
features_oly=True,
)
model = model.eval()
# get model specific trasforms (ormalizatio, resize)
data_cofig = timm.data.resolve_model_data_cofig(model)
trasforms = timm.data.create_trasform(**data_cofig, is_traiig=False)
output = model(trasforms(img).usqueeze(0)) # usqueeze sigle image ito batch of 1
for o i output:
# prit shape of each feature map i output
# e.g.:
# torch.Size([1, 32, 112, 112])
# torch.Size([1, 96, 56, 56])
# torch.Size([1, 192, 28, 28])
# torch.Size([1, 432, 14, 14])
# torch.Size([1, 1008, 7, 7])
prit(o.shape)
Image Embeddigs
from urllib.request import urlope
from PIL import Image
import timm
img = Image.ope(urlope(
'https://huggigface.co/datasets/huggigface/documetatio-images/resolve/mai/beigets-task-guide.pg'
))
model = timm.create_model(
'regetx_032.tv2_i1k',
pretraied=True,
um_classes=0, # remove classifier .Liear
)
model = model.eval()
# get model specific trasforms (ormalizatio, resize)
data_cofig = timm.data.resolve_model_data_cofig(model)
trasforms = timm.data.create_trasform(**data_cofig, is_traiig=False)
output = model(trasforms(img).usqueeze(0)) # output is (batch_size, um_features) shaped tesor
# or equivaletly (without eedig to set um_classes=0)
output = model.forward_features(trasforms(img).usqueeze(0))
# output is upooled, a (1, 1008, 7, 7) shaped tesor
output = model.forward_head(output, pre_logits=True)
# output is a (1, um_features) shaped tesor
Model Compariso
timm
.
model
img_size
top1
top5
param_cout
gmacs
macts
regety1280.swagft_i1k
384
88.228
98.684
644.81
374.99
210.2
regety320.swagft_i1k
384
86.84
98.364
145.05
95.0
88.87
regety160.swagft_i1k
384
86.024
98.05
83.59
46.87
67.67
regety160.swi12kfti1k
288
86.004
97.83
83.59
26.37
38.07
regety1280.swaglc_i1k
224
85.996
97.848
644.81
127.66
71.58
regety160.lioi12kfti1k
288
85.982
97.844
83.59
26.37
38.07
regety160.swi12kfti1k
224
85.574
97.666
83.59
15.96
23.04
regety160.lioi12kfti1k
224
85.564
97.674
83.59
15.96
23.04
regety120.swi12kfti1k
288
85.398
97.584
51.82
20.06
35.34
regety2560.seerft_i1k
384
85.15
97.436
1282.6
747.83
296.49
regetze8.ra3i1k
320
85.036
97.268
57.7
15.46
63.94
regety120.swi12kfti1k
224
84.976
97.416
51.82
12.14
21.38
regety320.swaglc_i1k
224
84.56
97.446
145.05
32.34
30.26
regetz040h.ra3_i1k
320
84.496
97.004
28.94
6.43
37.94
regetze8.ra3i1k
256
84.436
97.02
57.7
9.91
40.94
regety1280.seerft_i1k
384
84.432
97.092
644.81
374.99
210.2
regetz040.ra3i1k
320
84.246
96.93
27.12
6.35
37.78
regetzd8.ra3i1k
320
84.054
96.992
23.37
6.19
37.08
regetzd8evos.ch_i1k
320
84.038
96.992
23.46
7.03
38.92
regetzd32.ra3i1k
320
84.022
96.866
27.58
9.33
37.08
regety080.ra3i1k
288
83.932
96.888
39.18
13.22
29.69
regety640.seerft_i1k
384
83.912
96.924
281.38
188.47
124.83
regety160.swaglc_i1k
224
83.778
97.286
83.59
15.96
23.04
regetz040h.ra3_i1k
256
83.776
96.704
28.94
4.12
24.29
regetv064.ra3i1k
288
83.72
96.75
30.58
10.55
27.11
regety064.ra3i1k
288
83.718
96.724
30.58
10.56
27.11
regety160.deiti1k
288
83.69
96.778
83.59
26.37
38.07
regetz040.ra3i1k
256
83.62
96.704
27.12
4.06
24.19
regetzd8.ra3i1k
256
83.438
96.776
23.37
3.97
23.74
regetzd32.ra3i1k
256
83.424
96.632
27.58
5.98
23.74
regetzd8evos.ch_i1k
256
83.36
96.636
23.46
4.5
24.92
regety320.seerft_i1k
384
83.35
96.71
145.05
95.0
88.87
regetv040.ra3i1k
288
83.204
96.66
20.64
6.6
20.3
regety320.tv2i1k
224
83.162
96.42
145.05
32.34
30.26
regety080.ra3i1k
224
83.16
96.486
39.18
8.0
17.97
regetv064.ra3i1k
224
83.108
96.458
30.58
6.39
16.41
regety040.ra3i1k
288
83.044
96.5
20.65
6.61
20.3
regety064.ra3i1k
224
83.02
96.292
30.58
6.39
16.41
regety160.deiti1k
224
82.974
96.502
83.59
15.96
23.04
regetx320.tv2i1k
224
82.816
96.208
107.81
31.81
36.3
regety032.rai1k
288
82.742
96.418
19.44
5.29
18.61
regety160.tv2i1k
224
82.634
96.22
83.59
15.96
23.04
regetzc16evos.ch_i1k
320
82.634
96.472
13.49
3.86
25.88
regety080tv.tv2_i1k
224
82.592
96.246
39.38
8.51
19.73
regetx160.tv2i1k
224
82.564
96.052
54.28
15.99
25.52
regetzc16.ra3i1k
320
82.51
96.358
13.46
3.92
25.88
regetv040.ra3i1k
224
82.44
96.198
20.64
4.0
12.29
regety040.ra3i1k
224
82.304
96.078
20.65
4.0
12.29
regetzc16.ra3i1k
256
82.16
96.048
13.46
2.51
16.57
regetzc16evos.ch_i1k
256
81.936
96.15
13.49
2.48
16.57
regety032.rai1k
224
81.924
95.988
19.44
3.2
11.26
regety032.tv2i1k
224
81.77
95.842
19.44
3.2
11.26
regetx080.tv2i1k
224
81.552
95.544
39.57
8.02
14.06
regetx032.tv2i1k
224
80.924
95.27
15.3
3.2
11.37
regety320.pyclsi1k
224
80.804
95.246
145.05
32.34
30.26
regetzb16.ra3i1k
288
80.712
95.47
9.72
2.39
16.43
regety016.tv2i1k
224
80.66
95.334
11.2
1.63
8.04
regety120.pyclsi1k
224
80.37
95.12
51.82
12.14
21.38
regety160.pyclsi1k
224
80.288
94.964
83.59
15.96
23.04
regetx320.pyclsi1k
224
80.246
95.01
107.81
31.81
36.3
regety080.pyclsi1k
224
79.882
94.834
39.18
8.0
17.97
regetzb16.ra3i1k
224
79.872
94.974
9.72
1.45
9.95
regetx160.pyclsi1k
224
79.862
94.828
54.28
15.99
25.52
regety064.pyclsi1k
224
79.716
94.772
30.58
6.39
16.41
regetx120.pyclsi1k
224
79.592
94.738
46.11
12.13
21.37
regetx016.tv2i1k
224
79.44
94.772
9.19
1.62
7.93
regety040.pyclsi1k
224
79.23
94.654
20.65
4.0
12.29
regetx080.pyclsi1k
224
79.198
94.55
39.57
8.02
14.06
regetx064.pyclsi1k
224
79.064
94.454
26.21
6.49
16.37
regety032.pyclsi1k
224
78.884
94.412
19.44
3.2
11.26
regety008tv.tv2_i1k
224
78.654
94.388
6.43
0.84
5.42
regetx040.pyclsi1k
224
78.482
94.24
22.12
3.99
12.2
regetx032.pyclsi1k
224
78.178
94.08
15.3
3.2
11.37
regety016.pyclsi1k
224
77.862
93.73
11.2
1.63
8.04
regetx008.tv2i1k
224
77.302
93.672
7.26
0.81
5.15
regetx016.pyclsi1k
224
76.908
93.418
9.19
1.62
7.93
regety008.pyclsi1k
224
76.296
93.05
6.26
0.81
5.25
regety004.tv2i1k
224
75.592
92.712
4.34
0.41
3.89
regety006.pyclsi1k
224
75.244
92.518
6.06
0.61
4.33
regetx008.pyclsi1k
224
75.042
92.342
7.26
0.81
5.15
regetx004tv.tv2_i1k
224
74.57
92.184
5.5
0.42
3.17
regety004.pyclsi1k
224
74.018
91.764
4.34
0.41
3.89
regetx006.pyclsi1k
224
73.862
91.67
6.2
0.61
3.98
regetx004.pyclsi1k
224
72.38
90.832
5.16
0.4
3.14
regety002.pyclsi1k
224
70.282
89.534
3.16
0.2
2.17
regetx002.pyclsi1k
224
68.752
88.556
2.68
0.2
2.16
Citatio
@IProceedigs{Radosavovic2020,
title = {Desigig Network Desig Spaces},
author = {Ilija Radosavovic ad Raj Prateek Kosaraju ad Ross Girshick ad Kaimig He ad Piotr Doll{'a}r},
booktitle = {CVPR},
year = {2020}
}
@misc{rw2019timm,
author = {Ross Wightma},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
joural = {GitHub repository},
doi = {10.5281/zeodo.4414861},
howpublished = {\url{https://github.com/huggigface/pytorch-image-models}}
}
点击空白处退出提示
评论