项目技术:数据增强(镜像反转、左右各旋转30度、增加噪点、MSRCR处理光线)、迁移学习、ReduceLROnPlateau缩小学习率、Xception/InceptionResNet-V2特征融合
项目成果:从Kaggle中获取999条数据,采用迁移学习及微调模型比较多个深度学习模型的准确率后,得到Xception模型最高仅为95.6%,对模型进行特征融合,模型准确率提升至98.4%
点击空白处退出提示
语言技术
Python、Torch、NLP开源地址
https://github.com/cc123-xiaoix/Unilever-Acne授权协议
BSD许可
项目技术:数据增强(镜像反转、左右各旋转30度、增加噪点、MSRCR处理光线)、迁移学习、ReduceLROnPlateau缩小学习率、Xception/InceptionResNet-V2特征融合
项目成果:从Kaggle中获取999条数据,采用迁移学习及微调模型比较多个深度学习模型的准确率后,得到Xception模型最高仅为95.6%,对模型进行特征融合,模型准确率提升至98.4%
评论