图像处理

本项目是一个面向计算机视觉领域的算法库,聚焦于图像分类任务,旨在为科研开发者提供简洁、可复用的模型实现与实验基础。其主要功能模块包括:核心模型集:提供多种经典卷积神经网络实现,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception系列、DenseNet等,涵盖从
2220Python人工智能
该科研项目提出并且通过实验证实了一种通过向Stable Diffusion模型增加一个基于CNN特征提取网络的人物形象编码器来实现让Stable Diffusion在生成模型未见过的形象时可以不需要额外训练或者微调主模型或者Lora模型。 文中提出了三种技术路线,最终在其中一种技术路线中成功实践并且在较少数据集上得出了有效的结果,证明了技术路线的可行性。 论文摘要: The current state-of-the-art Diffusion model has demonstrated excellent results in generating images. However, the images are monotonous and are mostly the result of the distribution of images of people in the training set, making it challenging to generate multiple images for a fixed number of individuals. This problem can often only be solved by fine-tuning the training of the model. This means that each individual/animated character image must be trained if it is to be drawn, and the hardware and cost of this training is often beyond the reach of the average user, who accounts for the largest number of people. To solve this problem, the Character Image Feature Encoder model proposed in this paper enables the user to use the process by simply providing a picture of the character to make the image of the character in the generated image match the expectation. In addition, various details can be adjusted during the process using prompts. Unlike traditional Image-to-Image models, the Character Image Feature Encoder extracts only the relevant image features, rather than information about the model's composition or movements. In addition, the Character Image Feature Encoder can be adapted to different models after training. The proposed model can be conveniently incorporated into the Stable Diffusion generation process without modifying the model's ontology or used in combination with Stable Diffusion as a joint model.
1920python人工智能
本项目开发一个书籍自动翻译器,该翻译器能够对pdf或word格式的文档进行自动翻译成中文,并输出为pdf或markdown格式的文件。 该工具使用了大语言模型LLMs(GPT-4o等),可以根据配置文件选用不同的大模型 主要开发语言为Python,该项目是模块化的,并且面向对象的设计,易于定制或拓展
3520深度学习人工智能
由于之前一直在公司工作,很多项目无法截图,这边写上自己个人技能: 独立开发过CV/NLP/机器学习项目,具备独立解决问题的能力。 精通医疗/通用场景图像分类、检测、信息抽取、OCR及一维信号分类。 自学能力强,能够快速学习、掌握新技术和工具,持续跟踪业内最新技术进展(AIGC、LLM)。 熟悉BERT相关预训练模型的使用及其NLU任务定制等通用NLP技术及LLM大模型的微调。 在天池CBLUE医疗信息大数据比赛中排名第27名,KAGGLE毒性评论打分比赛获得银牌。 熟练使用PYTHON开发,熟悉C、MATLAB。
2330深度学习人工智能
当前共4个项目more
×
寻找源码
源码描述
联系方式
提交