自然语言处理

实时语音识别 (Real-time Speech Recognition): 能够捕捉麦克风输入,并将用户的语音实时、准确地转换为文本。 自然语言理解 (Natural Language Understanding - NLU): 分析转换后的文本,理解用户的意图和关键信息(例如指令、询问的对象、参数等)。 对话管理 (Dialogue Management): 在多轮交互中维护对话状态和上下文,使对话更加连贯自然。 任务执行与技能调用 (Task Execution & Skill Invocation): 根据理解的用户意图,执行相应的操作,例如: 信息查询: 获取天气预报、时间、百科知识、新闻等。 媒体控制: 播放/暂停音乐、调整音量。 简单助理任务: 设置提醒、创建待办事项。 语音合成 (Text-to-Speech - TTS): 将助手的文本回复通过 edge-tts 转换成清晰自然的语音进行播放。 Web 界面交互 (Web Interface Interaction): 提供一个用户友好的网页界面,可以: 显示语音识别的文本和助手的回复。 允许用户通过文本输入与助手交互。 (可能) 展示图片、链接等多媒体信息。 多模态反馈 (Multimodal Feedback): 结合语音、文本以及可能的视觉元素(在Web界面上)来呈现信息和交互结果。 图像分析(Image Analysis): 可以通过pygame.camera调用摄像头或者截图当前页面,并与llm互动获取想要的信息 剪切板提取(Clipboard Management): 可以通过pypercli获取剪切板中的文本内容并自动判断是否需要进行执行 上下文管理(Context management): 通过EnhancedConversationContext类管理对话记录,支持记住或者遗忘特定信息,根据相似度判断是否清除旧的上下文,能够根据对话历史生成更相关的回复 日志记录(Logging): 使用rich库美化日志输出,并将日志保存到文件中 网页搜索(Search): 使用DuckDuckGo搜索用户指定的内容,并返回搜索结果摘要
970Torch机器学习/深度学习
由于之前一直在公司工作,很多项目无法截图,这边写上自己个人技能: 独立开发过CV/NLP/机器学习项目,具备独立解决问题的能力。 精通医疗/通用场景图像分类、检测、信息抽取、OCR及一维信号分类。 自学能力强,能够快速学习、掌握新技术和工具,持续跟踪业内最新技术进展(AIGC、LLM)。 熟悉BERT相关预训练模型的使用及其NLU任务定制等通用NLP技术及LLM大模型的微调。 在天池CBLUE医疗信息大数据比赛中排名第27名,KAGGLE毒性评论打分比赛获得银牌。 熟练使用PYTHON开发,熟悉C、MATLAB。
2350深度学习人工智能
个人构建基于酒店咨询类对话机器人 1、项目使用RASA开源框架; 2、项目内加入自己训练的情感识别模型、信息抽取模型、意图识别模型; 3、可以作为酒店有限域对话机器人; 4、项目由本人独立完成。
1710深度学习机器学习/深度学习
当前共3个项目more
×
寻找源码
源码描述
联系方式
提交