本项目分成两个部分:模型训练和实时检测。
1)模型训练:主要是通过改进的Yolo V8算法,结合钢筋检测数据库,完成对应的钢筋检测模型的训练。目前收集整理的数据集有3000多张,测试检测准确率达到99%以上;
2) 模型推理:利用1训练得到的检测模型完成实时的钢筋检测,并给出对应的计数。单张图片检测时间达到毫秒级别,实时性高,可集成到app中。
本项目的额核心技术是目标检测技术,主要用到的算法是Yolo V8,该技术可以迁移到类似的项目上,例如竹签计数等。
点击空白处退出提示
本项目分成两个部分:模型训练和实时检测。
1)模型训练:主要是通过改进的Yolo V8算法,结合钢筋检测数据库,完成对应的钢筋检测模型的训练。目前收集整理的数据集有3000多张,测试检测准确率达到99%以上;
2) 模型推理:利用1训练得到的检测模型完成实时的钢筋检测,并给出对应的计数。单张图片检测时间达到毫秒级别,实时性高,可集成到app中。
本项目的额核心技术是目标检测技术,主要用到的算法是Yolo V8,该技术可以迁移到类似的项目上,例如竹签计数等。
评论