RANER介绍
模型描述
本方法采用Trasformer-CRF模型,使用StructBERT作为预训练模型底座,结合使用外部工具召回的相关句子作为额外上下文,使用Multi-view Traiig方式进行训练。
模型结构如下图所示:

可参考论文:Improvig Named Etity Recogitio by Exteral Cotext Retrievig ad Cooperative Learig
期望模型使用方式以及适用范围
本模型主要用于给输入中文句子产出命名实体识别结果。用户可以自行尝试输入中文句子。具体调用方式请参考代码示例。
如何使用
在安装ModelScope完成之后即可使用amed-etity-recogitio(命名实体识别)的能力, 默认单句长度不超过512。
代码范例
from modelscope.pipelies import pipelie
from modelscope.utils.costat import Tasks
er_pipelie = pipelie(Tasks.amed_etity_recogitio, 'damo/lp_raer_amed-etity-recogitio_chiese-base-geeric')
result = er_pipelie('数年前,北海还是北部湾一个默默无闻的小渔村,然而三五年时间北海已建成了一个现代化都市的框架')
prit(result)
基于AdaSeq进行微调和推理(仅需一行命令)
AdaSeq是一个基于ModelScope的一站式NLP序列理解开源工具箱,支持高效训练自定义模型,旨在提高开发者和研究者们的开发和创新效率,助力模型快速定制和前沿论文工作落地。
- 安装AdaSeq
pip istall adaseq
- 模型微调
准备训练配置,将下面的代码保存为trai.yaml。
该配置中的数据集为示例数据集toy_msra,如需使用自定义数据或调整参数,可参考《AdaSeq模型训练最佳实践》,准备数据或修改配置文件。AdaSeq中也提供了大量的模型、论文、比赛复现示例,欢迎大家使用。
experimet:
exp_dir: experimets/
exp_ame: toy_msra
seed: 42
task: amed-etity-recogitio
dataset:
ame: damo/toy_msra
preprocessor:
type: sequece-labelig-preprocessor
max_legth: 100
data_collator: SequeceLabeligDataCollatorWithPaddig
model:
type: sequece-labelig-model
embedder:
model_ame_or_path: damo/lp_raer_amed-etity-recogitio_chiese-base-geeric
dropout: 0.1
use_crf: true
trai:
max_epochs: 5
dataloader:
batch_size_per_gpu: 8
optimizer:
type: AdamW
lr: 5.0e-5
param_groups:
- regex: crf
lr: 5.0e-1
optios:
cumulative_iters: 4
evaluatio:
dataloader:
batch_size_per_gpu: 16
metrics:
- type: er-metric
运行命令开始训练。在GPU上训练需要至少6G显存,可以根据实际GPU情况调整batch_size等参数。
adaseq trai -c trai.yaml
- 模型推理
模型会保存在 ./experimets/toy_msra/${yymmddHHMMSS.ffffff}/output/
可以将上文推理示例代码中的model_id替换为本地路径(绝对路径)进行推理
保存的模型也可上传到ModelScope进行使用
模型局限性以及可能的偏差
本模型基于Otootes 4.0数据集(通用领域)上训练,在垂类领域中文文本上的NER效果会有降低,请用户自行评测后决定如何使用。
训练数据介绍
- Otootes 4.0 通用领域中文命名实体识别公开数据集,包括地缘政治实体、地名、机构名、人名,共24371个句子。
实体类型 |
英文名 |
地缘政治实体 |
GPE |
地名 |
LOC |
机构名 |
ORG |
人名 |
PER |
数据评估及结果
模型在Otootes 4.0测试数据评估结果:
Dataset |
Precisio |
Recall |
F1 |
Otootes |
81.98 |
84.12 |
83.04 |
各个类型的性能如下:
Dataset |
Precisio |
Recall |
F1 |
GPE |
83.24 |
85.49 |
84.35 |
LOC |
53.54 |
49.29 |
51.33 |
ORG |
76.86 |
77.52 |
77.19 |
PER |
91.03 |
97.42 |
94.12 |
相关论文以及引用信息
如果你觉得这个该模型对你有所帮助,请考虑引用下面的相关的论文:
@iproceedigs{wag-etal-2021-improvig,
title = "Improvig Named Etity Recogitio by Exteral Cotext Retrievig ad Cooperative Learig",
author = "Wag, Xiyu ad
Jiag, Yog ad
Bach, Nguye ad
Wag, Tao ad
Huag, Zhogqiag ad
Huag, Fei ad
Tu, Kewei",
booktitle = "Proceedigs of the 59th Aual Meetig of the Associatio for Computatioal Liguistics ad the 11th Iteratioal Joit Coferece o Natural Laguage Processig (Volume 1: Log Papers)",
moth = aug,
year = "2021",
address = "Olie",
publisher = "Associatio for Computatioal Liguistics",
url = "https://aclathology.org/2021.acl-log.142",
pages = "1800--1812",
}
@iproceedigs{wag-etal-2022-damo,
title = "{DAMO}-{NLP} at {S}em{E}val-2022 Task 11: A Kowledge-based System for Multiligual Named Etity Recogitio",
author = "Wag, Xiyu ad
She, Yogliag ad
Cai, Jiog ad
Wag, Tao ad
Wag, Xiaobi ad
Xie, Pegju ad
Huag, Fei ad
Lu, Weimig ad
Zhuag, Yuetig ad
Tu, Kewei ad
Lu, Wei ad
Jiag, Yog",
booktitle = "Proceedigs of the 16th Iteratioal Workshop o Sematic Evaluatio (SemEval-2022)",
moth = jul,
year = "2022",
address = "Seattle, Uited States",
publisher = "Associatio for Computatioal Liguistics",
url = "https://aclathology.org/2022.semeval-1.200",
pages = "1457--1468",
}
评论