二郎神-MacBERT-110M-二分类-中文

我要开发同款
匿名用户2024年07月31日
48阅读
所属分类ai、bert、pytorch、classification
开源地址https://modelscope.cn/models/Fengshenbang/Erlangshen-MacBERT-110M-BinaryClassification-Chinese
授权协议Apache License 2.0

作品详情

Erlangshen- MacBERT-110M-BinaryClassification-Chinese

简介 Brief Introduction

1.1亿参数的MacBERT,在大规模二分类数据上预训练

The MacBERT with 110M parameters is pre-trained on large-scale binary classification data.

模型分类 Model Taxonomy

需求 Demand 任务 Task 系列 Series 模型 Model 参数 Parameter 额外 Extra
通用 General 自然语言理解 NLU 二郎神 Erlangshen MacBERT 110M Chinese

模型信息 Model Information

为了提高模型在二分类任务上效果,我们收集了大量开源二分类数据并使用meta- learning方法对其增量预训练。

To improve the model performance on the binary classification task, we collected numerous binary classification datasets for incremental pre-training based on meta-learning methods.

下游效果 Performance

在EPRSTMT任务上的效果:

The results on EPRSTMT:

Model EPRSTMT
MacBERT 74.96
Erlangshen- MacBERT-110M-BinaryClassification-Chinese 88.56

使用 Usage

```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks

pipelineins = pipeline( 'fill-mask', model='Fengshenbang/Erlangshen-MacBERT-110M-BinaryClassification-Chinese', modelrevision='v1.0.1' )

print(pipeline_ins('中国首都位于'))

## 引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):

If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):

text @article{fengshenbang, author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} }

也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论