通义千问-VL-Chat

我要开发同款
匿名用户2024年07月31日
267阅读

技术信息

开源地址
https://modelscope.cn/models/qwen/Qwen-VL-Chat

作品详情



Qwe-VL ? ?&bsp; | Qwe-VL-Chat ? ?&bsp; (It4: ? ?&bsp;) | Qwe-VL-Plus ? ?&bsp; | Qwe-VL-Max ? ?&bsp;
Web&bsp;&bsp; | &bsp;&bsp; API&bsp;&bsp; | &bsp;&bsp; WeChat&bsp;&bsp; | &bsp;&bsp; Discord&bsp;&bsp; | &bsp;&bsp; Paper&bsp;&bsp; | &bsp;&bsp; Tutorial


Qwe-VL 是阿里云研发的大规模视觉语言模型(Large Visio Laguage Model, LVLM)。Qwe-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwe-VL 系列模型的特点包括:

  • 强大的性能:在四大类多模态任务的标准英文测评中(Zero-shot Captio/VQA/DocVQA/Groudig)上,均取得同等通用模型大小下最好效果;
  • 多语言对话模型:天然支持多语言对话,端到端支持图片里中英双语的长文本识别;
  • 多图交错对话:支持多图输入和比较,指定图片问答,多图文学创作等;
  • 首个支持中文开放域定位的通用模型:通过中文开放域语言表达进行检测框标注;
  • 细粒度识别和理解:相比于目前其它开源LVLM使用的224分辨率,Qwe-VL是首个开源的448分辨率的LVLM模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。

Qwe-VL (Qwe Large Visio Laguage Model) is the visual multimodal versio of the large model series, Qwe (abbr. Togyi Qiawe), proposed by Alibaba Cloud. Qwe-VL accepts image, text, ad boudig box as iputs, outputs text ad boudig box. The features of Qwe-VL iclude:

  • Strog performace: It sigificatly surpasses existig ope-source Large Visio Laguage Models (LVLM) uder similar scale settigs o multiple Eglish evaluatio bechmarks (icludig Zero-shot captio, VQA, DocVQA, ad Groudig).
  • Multi-ligual LVLM support text recogizatio: Qwe-VL aturally supports multi-ligual coversatio, ad it promotes ed-to-ed recogitio of Chiese ad Eglish bi-ligual text i images.
  • Multi-image iterleaved coversatios: This feature allows for the iput ad compariso of multiple images, as well as the ability to specify questios related to the images ad egage i multi-image storytellig.
  • First geeralist model support groudig i Chiese: Detectig boudig boxes through ope-domai laguage expressio i both Chiese ad Eglish.
  • Fie-graied recogizatio ad uderstadig: Compared to the 224 resolutio curretly used by other ope-source LVLM, the 448 resolutio promotes fie-graied text recogitio, documet QA, ad boudig box aotatio.

目前,我们提供了 Qwe-VL 系列的两个模型:

  • Qwe-VL: Qwe-VL 以 Qwe-7B 的预训练模型作为语言模型的初始化,并以 Opeclip ViT-bigG 作为视觉编码器的初始化,中间加入单层随机初始化的 cross-attetio,经过约1.5B的图文数据训练得到。最终图像输入分辨率为448。
  • Qwe-VL-Chat: 在 Qwe-VL 的基础上,我们使用对齐机制打造了基于大语言模型的视觉AI助手Qwe-VL-Chat,其训练数据涵盖了 QWe-7B 的纯文本 SFT 数据、开源 LVLM 的 SFT 数据、数据合成和人工标注的图文对齐数据。

如果想了解更多关于模型的信息,请点击链接查看我们的技术备忘录。

We release two models of the Qwe-VL series:

  • Qwe-VL: The pre-traied LVLM model uses Qwe-7B as the iitializatio of the LLM, ad Opeclip ViT-bigG as the iitializatio of the visual ecoder. Ad coects them with a radomly iitialized cross-attetio layer. Qwe-VL was traied o about 1.5B image-text paired data. The fial image iput resolutio is 448.
  • Qwe-VL-Chat: A multimodal LLM-based AI assistat, which is traied with aligmet techiques.

For more details about Qwe-VL, please refer to our techical memo.

依赖项 (Depedecy)

  • pytho 3.8及以上版本
  • pytorch 1.12及以上版本,推荐2.0及以上版本
  • 建议使用CUDA 11.4及以上(GPU用户需考虑此选项)
pip istall modelscope -U
pip istall trasformers accelerate tiktoke -U
pip istall eiops trasformers_stream_geerator -U
pip istall "pillow==9.*" -U
pip istall torchvisio
pip istall matplotlib -U

快速使用(Quickstart)

您可以通过以下代码轻松调用:

You ca easily call the model with the followig code:

from modelscope import (
    sapshot_dowload, AutoModelForCausalLM, AutoTokeizer, GeeratioCofig
)
import torch
model_id = 'qwe/Qwe-VL-Chat'
revisio = 'v1.1.0'

model_dir = sapshot_dowload(model_id, revisio=revisio)
torch.maual_seed(1234)

# 请注意:分词器默认行为已更改为默认关闭特殊toke攻击防护。
tokeizer = AutoTokeizer.from_pretraied(model_dir, trust_remote_code=True)
# 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
# model = AutoModelForCausalLM.from_pretraied(model_dir, device_map="auto", trust_remote_code=True, bf16=True).eval()
# 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存
model = AutoModelForCausalLM.from_pretraied(model_dir, device_map="auto", trust_remote_code=True, fp16=True).eval()
# 使用CPU进行推理,需要约32GB内存
# model = AutoModelForCausalLM.from_pretraied(model_dir, device_map="cpu", trust_remote_code=True).eval()
# 默认使用自动模式,根据设备自动选择精度
# model = AutoModelForCausalLM.from_pretraied(model_dir, device_map="auto", trust_remote_code=True).eval()

# 可指定不同的生成长度、top_p等相关超参
model.geeratio_cofig = GeeratioCofig.from_pretraied(model_dir, trust_remote_code=True)

# 第一轮对话 1st dialogue tur
query = tokeizer.from_list_format([
    {'image': 'https://qiawe-res.oss-c-beijig.aliyucs.com/Qwe-VL/assets/demo.jpeg'},
    {'text': '这是什么'},
])
respose, history = model.chat(tokeizer, query=query, history=Noe)
prit(respose)
# 图中是一名年轻女子在沙滩上和她的狗玩耍,狗的品种是拉布拉多。她们坐在沙滩上,狗的前腿抬起来,与人互动。

# 第二轮对话 2st dialogue tur
respose, history = model.chat(tokeizer, '输出击掌的检测框', history=history)
prit(respose)
# <ref>"击掌"</ref><box>(211,412),(577,891)</box>
image = tokeizer.draw_bbox_o_latest_picture(respose, history)
image.save('output_chat.jpg')

使用量化

import os
os.eviro['CUDA_VISIBLE_DEVICES'] = '0'
from modelscope import (
    sapshot_dowload, AutoModelForCausalLM, AutoTokeizer, GeeratioCofig,
)
from trasformers import BitsAdBytesCofig
import torch
model_id = 'qwe/Qwe-VL-Chat'
revisio = 'v1.1.0'

model_dir = sapshot_dowload(model_id, revisio=revisio)
torch.maual_seed(1234)
quatizatio_cofig = BitsAdBytesCofig(
    load_i_4bit=True,
    bb_4bit_compute_dtype=torch.float16,
    bb_4bit_quat_type='f4',
    bb_4bit_use_double_quat=True,
    llm_it8_skip_modules=['lm_head', 'att_pool.att'])

tokeizer = AutoTokeizer.from_pretraied(model_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretraied(model_dir, device_map="auto", 
                                             trust_remote_code=True, fp16=True,
                                             quatizatio_cofig=quatizatio_cofig).eval()
model.geeratio_cofig = GeeratioCofig.from_pretraied(model_dir, trust_remote_code=True)

query = tokeizer.from_list_format([
    {'image': 'https://qiawe-res.oss-c-beijig.aliyucs.com/Qwe-VL/assets/demo.jpeg'},
    {'text': '这是什么'},
])
respose, history = model.chat(tokeizer, query=query, history=Noe)
prit(respose)

respose, history = model.chat(tokeizer, '输出狗的检测框', history=history)
prit(respose)
image = tokeizer.draw_bbox_o_latest_picture(respose, history)
image.save('output_chat2.jpg')

微调(SFT)

代码链接: https://github.com/modelscope/swift/tree/mai/examples/pytorch/llm

  1. 支持的sft方法: lora, qlora, 全参数微调, …
  2. 支持的模型: qwe系列, qwe-vl系列, baichua系列, chatglm2系列, llama系列, opebuddy-llama系列, iterlm系列, xverse系列, …
  3. 支持的特性: 模型量化, DDP, 模型并行, gradiet checkpoitig, 梯度累加, 支持推送ModelScope Hub, 自定义数据集, 多模态和Aget SFT, 多轮对话, …

使用qlora SFT qwe-vl-chat的脚本 (需要10GB显存)

# https://github.com/modelscope/swift/blob/mai/examples/pytorch/llm/scripts/qwe_vl_chat/qlora/sft.sh
# Experimetal eviromet: A10
# 10GB GPU memory (ot use flash_att)
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
pytho llm_sft.py \
    --model_type qwe-vl-chat \
    --sft_type lora \
    --template_type chatml \
    --dtype bf16 \
    --output_dir output \
    --dataset coco-e \
    --trai_dataset_sample 20000 \
    --um_trai_epochs 1 \
    --max_legth 2048 \
    --quatizatio_bit 4 \
    --bb_4bit_comp_dtype bf16 \
    --lora_rak 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0. \
    --lora_target_modules c_att att.c_proj \
    --gradiet_checkpoitig true \
    --batch_size 1 \
    --weight_decay 0. \
    --learig_rate 1e-4 \
    --gradiet_accumulatio_steps 16 \
    --max_grad_orm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --loggig_steps 10 \
    --use_flash_att false \
    --push_to_hub false \
    --hub_model_id qwe-vl-chat-qlora \
    --hub_private_repo true \
    --hub_toke 'your-sdk-toke' \

评测

我们从两个角度评测了两个模型的能力:

  1. 英文标准 Bechmark 上评测模型的基础任务能力。目前评测了四大类多模态任务:

    • Zero-shot Captio: 评测模型在未见过数据集上的零样本图片描述能力;
    • Geeral VQA: 评测模型的通用问答能力,例如判断题、颜色、个数、类目等问答能力;
    • Text-based VQA:评测模型对于图片中文字相关的识别/问答能力,例如文档问答、图表问答、文字问答等;
    • Referrig Expressio Compressio:评测模型给定物体描述画检测框的能力;
  2. 试金石 (TouchStoe):为了评测模型整体的图文对话能力和人类对齐水平。我们为此构建了一个基于 GPT4 打分来评测 LVLM 模型的 Bechmark:TouchStoe。在 TouchStoe-v0.1 中:

    • 评测基准总计涵盖 300+张图片、800+道题目、27个类别。包括基础属性问答、人物地标问答、影视作品问答、视觉推理、反事实推理、诗歌创作、故事写作,商品比较、图片解题等尽可能广泛的类别
    • 为了弥补目前 GPT4 无法直接读取图片的缺陷,我们给所有的带评测图片提供了人工标注的充分详细描述,并且将图片的详细描述、问题和模型的输出结果一起交给 GPT4 打分。
    • 评测同时包含英文版本和中文版本。

评测结果如下:

We evaluated the model's ability from two perspectives:

  1. Stadard Bechmarks: We evaluate the model's basic task capabilities o four major categories of multimodal tasks:
  • Zero-shot Captio: Evaluate model's zero-shot image captioig ability o usee datasets;
  • Geeral VQA: Evaluate the geeral questio-aswerig ability of pictures, such as the judgmet, color, umber, category, etc;
  • Text-based VQA: Evaluate the model's ability to recogize text i pictures, such as documet QA, chart QA, etc;
  • Referrig Expressio Comprehesio: Evaluate the ability to localize a target object i a image described by a referrig expressio.
  1. TouchStoe: To evaluate the overall text-image dialogue capability ad aligmet level with humas, we have costructed a bechmark called TouchStoe, which is based o scorig with GPT4 to evaluate the LVLM model.
  • The TouchStoe bechmark covers a total of 300+ images, 800+ questios, ad 27 categories. Such as attribute-based Q&A, celebrity recogitio, writig poetry, summarizig multiple images, product compariso, math problem solvig, etc;
  • I order to break the curret limitatio of GPT4 i terms of direct image iput, TouchStoe provides fie-graied image aotatios by huma labelig. These detailed aotatios, alog with the questios ad the model's output, are the preseted to GPT4 for scorig.
  • The bechmark icludes both Eglish ad Chiese versios.

Zero-shot Captioig & Geeral VQA

Model type Model Zero-shot Captioig Geeral VQA
NoCaps Flickr30K VQAv2dev OK-VQA GQA SciQA-Img
(0-shot)
VizWiz
(0-shot)
Geeralist
Models
Flamigo-9B - 61.5 51.8 44.7 - - 28.8
Flamigo-80B - 67.2 56.3 50.6 - - 31.6
Uified-IO-XL 100.0 - 77.9 54.0 - - -
Kosmos-1 - 67.1 51.0 - - - 29.2
Kosmos-2 - 66.7 45.6 - - - -
BLIP-2 (Vicua-13B) 103.9 71.6 65.0 45.9 32.3 61.0 19.6
IstructBLIP (Vicua-13B) 121.9 82.8 - - 49.5 63.1 33.4
Shikra (Vicua-13B) - 73.9 77.36 47.16 - - -
Qwe-VL (Qwe-7B) 121.4 85.8 78.8 58.6 59.3 67.1 35.2
Qwe-VL-Chat 120.2 81.0 78.2 56.6 57.5 68.2 38.9
Previous SOTA
(Per Task Fie-tuig)
- 127.0
(PALI-17B)
84.5
(IstructBLIP
-FlaT5-XL)
86.1
(PALI-X
-55B)
66.1
(PALI-X
-55B)
72.1
(CFR)
92.53
(LLaVa+
GPT-4)
70.9
(PALI-X
-55B)
  • 在 Zero-shot Captio 中,Qwe-VL 在 Flickr30K 数据集上取得了 SOTA 的结果,并在 Nocaps 数据集上取得了和 IstructBlip 可竞争的结果。

  • 在 Geeral VQA 中,Qwe-VL 取得了 LVLM 模型同等量级和设定下 SOTA 的结果。

  • For zero-shot image captioig, Qwe-VL achieves the SOTA o Flickr30K ad competitive results o Nocaps with IstructBlip.

  • For geeral VQA, Qwe-VL achieves the SOTA uder the same geeralist LVLM scale settigs.

Text-orieted VQA (focuse o text uderstadig capabilities i images)

Model type Model TextVQA DocVQA ChartQA AI2D OCR-VQA
Geeralist Models BLIP-2 (Vicua-13B) 42.4 - - - -
IstructBLIP (Vicua-13B) 50.7 - - - -
mPLUG-DocOwl (LLaMA-7B) 52.6 62.2 57.4 - -
Pic2Struct-Large (1.3B) - 76.6 58.6 42.1 71.3
Qwe-VL (Qwe-7B) 63.8 65.1 65.7 62.3 75.7
Specialist SOTAs
(Specialist/Fietued)
PALI-X-55B (Sigle-task FT)
(Without OCR Pipelie)
71.44 80.0 70.0 81.2 75.0
  • 在文字相关的识别/问答评测上,取得了当前规模下通用 LVLM 达到的最好结果。

  • 分辨率对上述某几个评测非常重要,大部分 224 分辨率的开源 LVLM 模型无法完成以上评测,或只能通过切图的方式解决。Qwe-VL 将分辨率提升到 448,可以直接以端到端的方式进行以上评测。Qwe-VL 在很多任务上甚至超过了 1024 分辨率的 Pic2Struct-Large 模型。

  • I text-related recogitio/QA evaluatio, Qwe-VL achieves the SOTA uder the geeralist LVLM scale settigs.

  • Resolutio is importat for several above evaluatios. While most ope-source LVLM models with 224 resolutio are icapable of these evaluatios or ca oly solve these by cuttig images, Qwe-VL scales the resolutio to 448 so that it ca be evaluated ed-to-ed. Qwe-VL eve outperforms Pic2Struct-Large models of 1024 resolutio o some tasks.

Referrig Expressio Comprehesio

Model type Model RefCOCO RefCOCO+ RefCOCOg GRIT
val test-A test-B val test-A test-B val-u test-u refexp
Geeralist Models GPV-2 - - - - - - - - 51.50
OFA-L* 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 61.70
Uified-IO - - - - - - - - 78.61
VisioLLM-H 86.70 - - - - - - -
Shikra-7B 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 69.34
Shikra-13B 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16 69.03
Qwe-VL-7B 89.36 92.26 85.34 83.12 88.25 77.21 85.58 85.48 78.22
Qwe-VL-7B-Chat 88.55 92.27 84.51 82.82 88.59 76.79 85.96 86.32 -
Specialist SOTAs
(Specialist/Fietued)
G-DINO-L 90.56&bsp;&bsp; 93.19 88.24 82.75 88.95 75.92 86.13 87.02 -
UNINEXT-H 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.37 -
ONE-PEACE 92.58 94.18 89.26 88.77 92.21 83.23 89.22 89.27 -
  • 在定位任务上,Qwe-VL 全面超过 Shikra-13B,取得了目前 Geeralist LVLM 模型上在 Refcoco 上的 SOTA

  • Qwe-VL 并没有在任何中文定位数据上训练过,但通过中文 Captio 数据和 英文 Groudig 数据的训练,可以 Zero-shot 泛化出中文 Groudig 能力。

  • Qwe-VL achieves the SOTA i all above referrig expressio comprehesio bechmarks.

  • Qwe-VL has ot bee traied o ay Chiese groudig data, but it ca still geeralize to the Chiese Groudig tasks i a zero-shot way by traiig Chiese Captio data ad Eglish Groudig data.

我们提供了以上所有评测脚本以供复现我们的实验结果。请阅读 eval/EVALUATION.md 了解更多信息。

We provide all of the above evaluatio scripts for reproducig our experimetal results. Please read eval/EVALUATION.md for more iformatio.

Chat 能力测评

TouchStoe 是一个基于 GPT4 打分来评测 LVLM 模型的图文对话能力和人类对齐水平的基准。它涵盖了 300+张图片、800+道题目、27个类别,包括基础属性、人物地标、视觉推理、诗歌创作、故事写作、商品比较、图片解题等尽可能广泛的类别。关于 TouchStoe 的详细介绍,请参考这里(TODO: Lik)。

TouchStoe is a bechmark based o scorig with GPT4 to evaluate the abilities of the LVLM model o text-image dialogue ad aligmet levels with humas. It covers a total of 300+ images, 800+ questios, ad 27 categories, such as attribute-based Q&A, celebrity recogitio, writig poetry, summarizig multiple images, product compariso, math problem solvig, etc. Please read eval/EVALUATION.md for more iformatio.

英文版本测评

Model Score
PadaGPT 488.5
MiiGPT4 531.7
IstructBLIP 552.4
LLaMA-AdapterV2 590.1
mPLUG-Owl 605.4
LLaVA 602.7
Qwe-VL-Chat 645.2

中文版本测评

Model Score
VisualGLM 247.1
Qwe-VL-Chat 401.2

Qwe-VL-Chat 模型在中英文的对齐评测中均取得当前 LVLM 模型下的最好结果。

The Qwe-VL-Chat model has achieved the best results i both Chiese ad Eglish aligmet evaluatio.

FAQ

如遇到问题,敬请查阅FAQ以及issue区,如仍无法解决再提交issue。

使用协议

研究人员与开发者可使用Qwe-VL和Qwe-VL-Chat或进行二次开发。我们同样允许商业使用,具体细节请查看LICENSE。如需商用,请填写问卷申请。

联系我们

如果你想给我们的研发团队和产品团队留言,请通过邮件(qiawe_opesource@alibabacloud.com)联系我们。

功能介绍

Qwen-VL ? ?  | Qwen-VL-Chat ? ?  (Int4: ? ? ) | Qwen-VL-Plus ? ?  |

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论