wav2vec2-large-xlsr-53-english

我要开发同款
匿名用户2024年07月31日
41阅读

技术信息

开源地址
https://modelscope.cn/models/AI-ModelScope/wav2vec2-large-xlsr-53-english
授权协议
Apache License 2.0

作品详情

Fie-tued XLSR-53 large model for speech recogitio i Eglish

Fie-tued facebook/wav2vec2-large-xlsr-53 o Eglish usig the trai ad validatio splits of Commo Voice 6.1. Whe usig this model, make sure that your speech iput is sampled at 16kHz.

This model has bee fie-tued thaks to the GPU credits geerously give by the OVHcloud :)

The script used for traiig ca be foud here: https://github.com/joatasgrosma/wav2vec2-sprit

Usage

The model ca be used directly (without a laguage model) as follows…

Usig the HuggigSoud library:

from modelscope import sapshot_dowload
from huggigsoud import SpeechRecogitioModel

local_model = sapshot_dowload("AI-ModelScope/wav2vec2-large-xlsr-53-eglish",revisio='master')
model = SpeechRecogitioModel(local_model)
audio_paths = ["/path/to/file.mp3", "/path/to/aother_file.wav"]

trascriptios = model.trascribe(audio_paths)

Writig your ow iferece script:

import torch
import librosa
from datasets import load_dataset
from trasformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from modelscope import sapshot_dowload

LANG_ID = "e"
MODEL_ID = "AI-ModelScope/wav2vec2-large-xlsr-53-eglish"
SAMPLES = 10

test_dataset = load_dataset("commo_voice", LANG_ID, split=f"test[:{SAMPLES}]")
local_model = sapshot_dowload(MODEL_ID,revisio='master')
processor = Wav2Vec2Processor.from_pretraied(local_model)
model = Wav2Vec2ForCTC.from_pretraied(local_model)

# Preprocessig the datasets.
# We eed to read the audio files as arrays
def speech_file_to_array_f(batch):
    speech_array, samplig_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["setece"] = batch["setece"].upper()
    retur batch

test_dataset = test_dataset.map(speech_file_to_array_f)
iputs = processor(test_dataset["speech"], samplig_rate=16_000, retur_tesors="pt", paddig=True)

with torch.o_grad():
    logits = model(iputs.iput_values, attetio_mask=iputs.attetio_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_seteces = processor.batch_decode(predicted_ids)

for i, predicted_setece i eumerate(predicted_seteces):
    prit("-" * 100)
    prit("Referece:", test_dataset[i]["setece"])
    prit("Predictio:", predicted_setece)
Referece Predictio
"SHE'LL BE ALL RIGHT." SHE'LL BE ALL RIGHT
SIX SIX
"ALL'S WELL THAT ENDS WELL." ALL AS WELL THAT ENDS WELL
DO YOU MEAN IT? DO YOU MEAN IT
THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION
HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q
"I GUESS YOU MUST THINK I'M KINDA BATTY." RUSTIAN WASTIN PAN ONTE BATTLY
NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? NO ONE NEAR THE REMOTE MACHINE YOU COULD RING
SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER
GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD

Evaluatio

  1. To evaluate o mozilla-foudatio/commo_voice_6_0 with split test
pytho eval.py --model_id joatasgrosma/wav2vec2-large-xlsr-53-eglish --dataset mozilla-foudatio/commo_voice_6_0 --cofig e --split test
  1. To evaluate o speech-recogitio-commuity-v2/dev_data
pytho eval.py --model_id joatasgrosma/wav2vec2-large-xlsr-53-eglish --dataset speech-recogitio-commuity-v2/dev_data --cofig e --split validatio --chuk_legth_s 5.0 --stride_legth_s 1.0

Citatio

If you wat to cite this model you ca use this:

@misc{grosma2021xlsr53-large-eglish,
  title={Fie-tued {XLSR}-53 large model for speech recogitio i {E}glish},
  author={Grosma, Joatas},
  howpublished={\url{https://huggigface.co/joatasgrosma/wav2vec2-large-xlsr-53-eglish}},
  year={2021}
}

功能介绍

Fine-tuned XLSR-53 large model for speech recognition in English Fine-tuned facebook/wav2vec2-large-

声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论