MistoLie is a SDXL-CotrolNet model that ca adapt to ay type of lie art iput, demostratig high accuracy ad excellet stability. It ca geerate high-quality images (with a short side greater tha 1024px) based o user-provided lie art of various types, icludig had-draw sketches, differet CotrolNet lie preprocessors, ad model-geerated outlies. MistoLie elimiates the eed to select differet CotrolNet models for differet lie preprocessors, as it exhibits strog geeralizatio capabilities across diverse lie art coditios. We developed MistoLie by employig a ovel lie preprocessig algorithm ( MistoLie maitais cosistecy with the CotrolNet architecture released by @lllyasviel, as illustrated i the followig schematic diagram: More iformatio about CotrolNet ca be foud i the followig refereces: The model is compatible with most SDXL models, except for PlaygroudV2.5, CosXL, ad SDXL-Lightig(maybe). It ca be used i cojuctio with LCM ad other CotrolNet models. The followig usage of this model is ot allowed: If you use or distribute this model for commercial purposes, you must comply with the followig coditios: 署名条款 The model output is ot cesored ad the authors do ot edorse the opiios i the geerated cotet. Use at your ow risk. The followig case oly utilized MistoLie as the cotrolet:
The followig case oly utilized Aylie as the preprocessor ad MistoLie as the cotrolet.
Make sure to first istall the libraries: Ad the we're ready to go: 链接:https://pa.baidu.com/s/1DbZWmGJ40Uzr3Iz9RNBG_w?pwd=8mzsMistoLie
Cotrol Every Lie!
referece:https://github.com/lllyasviel/CotrolNet
https://github.com/lllyasviel/CotrolNet
https://huggigface.co/docs/diffusers/mai/e/api/pipelies/cotrolet_sdxl
If you have ay questios about how to provide attributio i specific cases, please cotact ifo@themisto.ai.
如果您在商业用途中使用或分发本模型,您必须满足以下条件:
如果您对如何在特定情况下提供署名有任何疑问,请联系ifo@themisto.ai。Apply with Differet Lie Preprocessors
Compere with Other Cotrolets
Applicatio Examples
Sketch Rederig
Model Rederig
ComfyUI Recommeded Parameters
sampler steps:30
CFG:7.0
sampler_ame:dpmpp_2m_sde
scheduler:karras
deoise:0.93
cotrolet_stregth:1.0
stargt_percet:0.0
ed_percet:0.9
Diffusers pipelie
pip istall accelerate trasformers safetesors opecv-pytho diffusers
from diffusers import CotrolNetModel, StableDiffusioXLCotrolNetPipelie, AutoecoderKL
from diffusers.utils import load_image
from PIL import Image
from modelscope import sapshot_dowload
import torch
import umpy as p
import cv2
prompt = "sea turtle"
egative_prompt = 'low quality, bad quality, sketches'
image = load_image("https://modelscope.oss-c-beijig.aliyucs.com/resource/sea%20turtle.jpeg")
cotrolet_coditioig_scale = 0.5
cotrolet_dir = sapshot_dowload("TheMisto.ai/MistoLie")
VAE_dir = sapshot_dowload("AI-ModelScope/sdxl-vae-fp16-fix")
SDXL_dir = sapshot_dowload("AI-ModelScope/stable-diffusio-xl-base-1.0")
cotrolet = CotrolNetModel.from_pretraied(
cotrolet_dir,
torch_dtype=torch.float16
variat="fp16",
)
vae = AutoecoderKL.from_pretraied(VAE_dir, torch_dtype=torch.float16)
pipe = StableDiffusioXLCotrolNetPipelie.from_pretraied(
SDXL_dir,
cotrolet=cotrolet,
vae=vae,
torch_dtype=torch.float16,
)
pipe.eable_model_cpu_offload()
image = p.array(image)
image = cv2.Cay(image, 100, 200)
image = image[:, :, Noe]
image = p.cocateate([image, image, image], axis=2)
image = Image.fromarray(image)
images = pipe(
prompt, egative_prompt=egative_prompt, image=image, cotrolet_coditioig_scale=cotrolet_coditioig_scale,
).images
images[0].save(f"turtle.pg")
Checkpoits
!!!mistoLierak256.safetesors better tha mistoLiefp16.safetesors
!!!mistoLie_rak256.safetesors 表现更加出色!!
ComfyUI Usage
中国(大陆地区)便捷下载地址:
提取码:8mzs Citatio
@misc{
title={Addig Coditioal Cotrol to Text-to-Image Diffusio Models},
author={Lvmi Zhag, Ayi Rao, Maeesh Agrawala},
year={2023},
eprit={2302.05543},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
点击空白处退出提示










评论