pai-bloom-1b1-text2prompt-sd

我要开发同款
匿名用户2024年07月31日
48阅读
所属分类ai、bloom、pytorch、text-generation、transformers、pytorch
开源地址https://modelscope.cn/models/AI-ModelScope/pai-bloom-1b1-text2prompt-sd
授权协议apache-2.0

作品详情

BeautifulPrompt

简介 Brief Introduction

我们开源了一个自动Prompt生成模型,您可以直接输入一个极其简单的Prompt,就可以得到经过语言模型优化过的Prompt,帮助您更简单地生成高颜值图像。

We release an automatic Prompt generation model, you can directly enter an extremely simple Prompt and get a Prompt optimized by the language model to help you generate more beautiful images simply.

使用 Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained('alibaba-pai/pai-bloom-1b1-text2prompt-sd')
model = AutoModelForCausalLM.from_pretrained('alibaba-pai/pai-bloom-1b1-text2prompt-sd').eval().cuda()

raw_prompt = '1 girl'
input = f'Instruction: Give a simple description of the image to generate a drawing prompt.\nInput: {raw_prompt}\nOutput:'
input_ids = tokenizer.encode(input, return_tensors='pt').cuda()

outputs = model.generate(
    input_ids,
    max_length=384,
    do_sample=True,
    temperature=1.0,
    top_k=50,
    top_p=0.95,
    repetition_penalty=1.2,
    num_return_sequences=5)

prompts = tokenizer.batch_decode(outputs[:, input_ids.size(1):], skip_special_tokens=True)
prompts = [p.strip() for p in prompts]
print(prompts)

作品展示 Gallery

Original BeautifulPrompt
prompt: taylor swift, country, golden, fearless,wavehair prompt: portrait of taylor swift as a beautiful woman, long hair, country, golden ratio, intricate, symmetrical, cinematic lighting, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration
Original BeautifulPrompt
prompt: A majestic sailing ship prompt: a massive sailing ship, epic, cinematic, artstation, greg rutkowski, james gurney, sparth

使用须知 Notice for Use

使用上述模型需遵守AIGC模型开源特别条款

If you want to use this model, please read this document carefully and abide by the terms.

Paper Citation

If you find the model useful, please consider cite the paper:

@inproceedings{emnlp2023a,
  author    = {Tingfeng Cao and
            Chengyu Wang and
            Bingyan Liu and
            Ziheng Wu and
            Jinhui Zhu and
            Jun Huang},
  title     = {BeautifulPrompt: Towards Automatic Prompt Engineering for Text-to-Image Synthesis},
  booktitle = {Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track},
  pages     = {1--11},
  year      = {2023}
}
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论