QT

1、基于深度神经网络的reid技术​1.1)采用局部信息对齐技术进一步提高精度​1.2)Top1识别率达到89%,Top3达93%以上​,即匹配结果在前三名识别率93%1.3)自动区分幼体和成熟体,幼儿未发育完整,无明显特征,统一归为一类,一般通过其母进行跟踪2、QT开发的桌面软件通过XXX部海YY
600Python机器深度学习
1.项目整体可以分为软件部分和硬件部分,软件部分可以分为图像采集、模型推理、结果输出、远程控制,硬件部分主要是外设(摄像头、屏幕,电源、喇叭)、边缘端处理设备和信号输出器2.功能描述,通过在适当位置部署摄像头采集图像,可以对危险进行预警并辅助操作员控制,具体辅助方式可以根据使用方式修改。这里以设备部
910C++机器深度学习
当前共2个项目more
×
寻找源码
源码描述
联系方式
提交