QT

1、基于深度神经网络的reid技术​1.1)采用局部信息对齐技术进一步提高精度​1.2)Top1识别率达到89%,Top3达93%以上​,即匹配结果在前三名识别率93%1.3)自动区分幼体和成熟体,幼儿未发育完整,无明显特征,统一归为一类,一般通过其母进行跟踪2、QT开发的桌面软件通过XXX部海YY
480Python机器深度学习
1. 大数据爬虫与智能筛查模块该模块通过大数据爬虫技术,自动采集与筛查校园安全、交通等领域相关的多模态数据,提供高质量的训练数据和分析结果。利用深度学习算法对采集的数据进行智能筛查和分类,为后续的监测系统提供支持。2. 计算机视觉与模式匹配模块该模块主要通过计算机视觉和模式匹配技术,实时分析视频流中
1180C++人工智能
1.分为端面缺陷检测以及内部缺陷检测两种;2.导入深度学习算法,对相似度比较近的缺陷进行分类;3.算法实现了对产品表面的各种各样的缺陷进行抓取、分类;4.为客户提供过漏检数据、缺陷分类数据,让客户可以根据数据对前端工艺进行优化修改,提升产能。
1761C++机器深度学习
1.数据库模块。保存产品信息,异物缺陷信息。2.通信模块。负责上位机与下位机的交互通信。3.人机交互模块。负责人机交互。4.算法模块。负责3D点云下的异物检测预与测量,2d场景下的异物分类。
1000C++机器深度学习
当前共4个项目more
×
寻找源码
源码描述
联系方式
提交