QT

1.数据库模块。保存产品信息,异物缺陷信息。2.通信模块。负责上位机与下位机的交互通信。3.人机交互模块。负责人机交互。4.算法模块。负责3D点云下的异物检测预与测量,2d场景下的异物分类。
430C++机器深度学习
双能X射线全身骨密度系统由上位机软件、STM32、FPGA组成,主要由上位软件进行扫描测控。技术包括操作系统原生Socket进行通讯、自主设计通讯协议设计与解析、骨密度算法实现/验证,线阵探测器图像重建、图像处理(降噪、增强、ROI分割)、深度学习训练以集成、软件架构设计、项目搭建、软件开发(QT)等。
880C/C++C/C++开发工具
与军工研究所合作开发针对雷达罩蜂窝孔径的测量仪器;实现对蜂窝格孔边长2-4mm,深度30mm范围内的单个蜂窝格孔内壁变形测量,并识别蜂窝格孔变形缺陷,形成六个蜂窝批量测量仪器;软件开发了上位测量操作及点云处理显示等核心算法;2D图像处理:1)图像操作及测量工具栏;2)选择测量中心处的二维图像(单个工件有多处测量中心);3)显示二维图像:可以任意选中格孔区域;4)结果显示1:通过3中任选多个孔,测量结果输出到该列表框,并最终输出到报表;5)缩略图显示:便于总图缩放显示;3D点云处理:1)3D点云操作及测量工具栏;2)选择测量中心处的3D点云(单个工件有多处测量中心);3)显示3D点云图像:可以任意选中格孔区域;4)结果显示1:通过3中任选多个孔,测量结果输出到该列表框,并最终输出到报表;5)内窥镜图像:显示格孔的合成图像;
990C/C++机器学习/深度学习
作品的CSDN地址:https://blog.csdn.net/zhulong1984/article/details/89929718 视频实景地图 立体防控系统通过在空中俯看地面,结合视频标签独有的增强现实技术能对建筑物、道路、重点目标等进行语义化标注以及属性添加,整体效果就是一个实景地图,能给监控人员带来非常直观的临场感。 高低点联动的立体监控 立体防控系统通过高点摄像机掌握监控区域的整体情况,通过增强现实视频联动技术能调用监控区域周边的低点摄像机,从不同角度查看监控区域的视频。
2611C/C++VR/AR
使用神经网络(LSTM)对样本存取频率进行预测,预测出未来哪些样本的存取频率高,并将其存放在离机械臂近的地方。 算法:长短期记忆网络(LSTM) 使用Pyside2来开发界面,使用Python语言编写 采用mysql数据库
1180python机器学习/深度学习
直播工具开源项目
介绍 目前功能 1.建议的弹幕姬 2.分析录播姬的弹幕文件 ,还支持在线的直播回放的弹幕分析 3.对直播收到礼物返回键盘按键映射 本人担任全部工作。分析用到了移动平均算法,kmeans算法等
1230python数据处理
本项目为物体识别,所用的算法框架为tensoflow,视频流处理用ffmpeg,物体分割使用yolov5和opencv库。 本项目物体识别率在99%。
1460机器学习Qt
当前共7个项目more
×
寻找源码
源码描述
联系方式
提交