机器深度学习

机器学习,深度学习是人工智能的核心分支,致力于让计算机系统通过数据驱动的方式自动学习和改进性能,而无需显式编程。其核心是从数据中识别模式或规律,构建数学模型,使计算机能完成预测、分类、聚类等任务。主要类型包括监督学习、无监督学习和强化学习。机器学习广泛应用于自然语言处理、计算机视觉、推荐系统等领域,正重塑各行各业,是当前AI爆发的核心技术之一。
后端管理平台对接设备数据,以及对数据进行处理。前端对接后端处理后的数据,对数据信息进行展示。功能包括设备管理(列表展示设备的基本数据),天气预警(展示温度、湿度的基本的天气信息)、AI预警(设计神经网络等算法对设备的未来趋势进行预测)等功能。
120Java工业互联网
DressYouUp产品系统
本项目为一款集成了智能穿搭与虚拟试衣功能的移动应用。其核心架构采用类微信的底部导航栏,结合MVVM设计模式,管理多个功能模块。应用具备账户登录、实时定位与多城市天气查询功能。在内容层面,应用能以瀑布流形式展示穿搭图片,支持用户根据性别、风格、场景等多维度进行筛选和搜索,并可收藏心仪穿搭。其核心创新功
70Python企业服务
1.分类结果完全可控大多数AI模型是黑盒,分错了只能干着急。本项目内置了“业务规则引擎”,允许您通过配置简单的关键词逻辑来直接干涉预测结果。例如:只要文本中出现“断水、断电”且包含“学校”,可以强制规则将其划分为“校园后勤”类,而无需重新训练模型。这种“AI模型+规则引擎”的双保险机制,确保了在生产
620Python人工智能
1.实现了数据的采集2.实现了用户管理的增删改查3.实现了设备的统一处理,增删改查,文件导入4实现了设备数据的接收和验证5.针对数据,会进行判断,如数据异常会做相应的报警
451Java机器深度学习
aloha复现产品系统
人类示范的模仿学习在机器人技术中表现出令人印象深刻的性能。然而,大多数成果专注于桌面操作,缺乏执行一般实用任务所需的移动性和灵巧性。在这项工作中,我们开发了一个模仿移动操作任务的系统,这些任务是双手的,并且需要全身控制。我们首先介绍MobileALOHA,这是一个低成本的全身远程操作系统,用于数据收
300Torch人工智能
项目实现了完整的AlphaZero训练与推理流程,包括自我博弈数据生成、基于MCTS的策略改进、策略-价值联合网络训练以及模型评估对弈。支持多种棋类环境扩展(如井字棋、Connect4),结构清晰,模块解耦,便于替换网络结构或搜索策略,用于强化学习与博弈算法的研究与实验。
470Python人工智能
本系统围绕医护培训在线考试系统的设计和实现展开研究,通过调研国内外相关文献和分析医护培训在线考试系统的功能需求,从而进行概要设计、详细设计,最终描述开发和实现过程。同时,在基本的在线考试系统基础上,本文通过引入基于遗传算法的自动组卷,确定约束条件,来简化人工命题组卷的过程,同时提高组卷质量;通过引入
470Java机器深度学习
收集A股原始交易数据,设计因子库,进行计算通过深度学习网络自动训练因子模型和策略模型通过滚动测试框架按照5-3-1(训练-验证-测试)的模式滚动训练5轮以上,以验证训练方法的可靠性通过web系统对训练生成的量化策略进行筛选、因子分析、相关性分析,并生成最终的组合策略
510C++金融
核心算法:采用最新的YOLOv11算法,兼顾检测速度与精度。一站式流程:集成环境检测、数据集配置、模型训练、结果可视化等全流程功能。多模态检测:支持图片文件、视频文件以及实时摄像头画面的目标检测。可视化交互:通过直观的GUI界面展示检测结果(边界框、置信度、类别),并支持训练过程中的参数配置与日志监
410C++人工智能
实时预警:100%全量监控,自动标识NG多维筛选:按机器号、膜色、时间范围灵活查询,支持编号搜索和趋势图点击联动智能诊断:每个异常样本提供光谱曲线对比、三通道分数、具体诊断建议趋势追踪:日/周/月粒度的稳定性趋势分析,Top15机台性能排名,支持工艺优化
410Python机器深度学习
核心功能模块包括数据处理模块、知识检索模块、模型训练模块、预测与评估模块、支撑功能模块。主要功能描述:数据处理模块支持Excel/CSV与JSONL格式自动转换,完成数据清洗、无效样本过滤及按题型比例拆分训练/验证集;知识检索模块实现知识库标准化处理、高维向量生成与FAISS索引构建,精准匹配“问题
680Python人工智能
该项目主要探索多维的Tensor在CPU上实现快速的矩阵运算等,功能实现涵盖了自定义内存配置器Allocator,createTensorOne,createTensorZero,createTensorRand,cat,normalize,selectSet,selectGet,toString,
460C++人工智能
云团AI变声产品系统
python+AI:深度学习transformer变声内核前端windowsc#wpf界面,包括:变声界面、音色市场、会员、账号管理、代币管理、微信充值、教程引导、营销卡片、公告日志、变声配置、音频设备管理、自动化配置、操作windows深度功能、虚拟声卡、激活码。后端Kotlin+C#服务器,包括
580C#人工智能
支持教师发起直播教学,直播过程可录制并自动生成回放视频供点播。系统记录学生视频观看进度、完成率、仿真实验次数、考试成绩等(学生观看学习视频的可以提供1.25倍速或者1.5倍速观看)教师可按“专业→产品→课程”三级结构上传、编辑、删除视频/课件/文档;支持拖拽上传、批量操作。课程视频采用HLS或MPE
430JavaScript音视频多媒体
项目产品系统
增加用户引导组件,如功能模块切换、说明区域等。(4)内容管理与数据结构设计设计模板库的数据结构(名称、封面、分类、文件结构说明)。负责作者信息、合作方式、教程页内容的统一展示。(5)部署与性能优化实现网站构建、压缩、打包与上线部署。处理页面加载速度优化、静态资源管理等。
640openCV低代码
1.项目整体可以分为软件部分和硬件部分,软件部分可以分为图像采集、模型推理、结果输出、远程控制,硬件部分主要是外设(摄像头、屏幕,电源、喇叭)、边缘端处理设备和信号输出器2.功能描述,通过在适当位置部署摄像头采集图像,可以对危险进行预警并辅助操作员控制,具体辅助方式可以根据使用方式修改。这里以设备部
640C++机器深度学习
1、项目有哪些具体功能模块:系统包含实时手语检测模块、手势学习模式、数据记录与分析模块、声音反馈系统、手势序列识别模块、用户界面模块和配置管理系统。实时检测模块通过摄像头捕捉手部动作并识别26种标准手势;学习模式提供交互式手势教学;数据记录模块保存识别历史用于分析;声音反馈提供实时提示;序列识别能检
1660Python人工智能
本项目结合AIOT(人工智能物联网)技术,利用单片机、传感器、摄像头等设备实时监测系统将自动生成警报信息并通过微信模板消息通知用户,确保消防设施的运行状态能够得到及时监控与响应
630C人工智能
经过初次学习,提交的作业实现的只有几个经典功能-蜂鸣器(开/关);摄像头capture(多次摄像、图片显示时可以点击上下切换);相册(左右点击切换以及删除图片);小试微game二个(仅仅基于字库和一些判断逻辑猜数字等);音乐播放(可随机播放-顺序播放上下一首-滑动调整音量),显示时间等。学习到同学做
930C++机器深度学习
1、提供图生3D服务,上传一张图片可以智能自动生成对应的3D模型,免去建模操作。2、提供线上3D打印服务,使用生成的3D模型可以在线上使用3D打印服务打印模型并提供快递寄送服务。
880Java机器深度学习
当前共983个项目more
×
寻找源码
源码描述
联系方式
提交