机器深度学习

机器学习,深度学习是人工智能的核心分支,致力于让计算机系统通过数据驱动的方式自动学习和改进性能,而无需显式编程。其核心是从数据中识别模式或规律,构建数学模型,使计算机能完成预测、分类、聚类等任务。主要类型包括监督学习、无监督学习和强化学习。机器学习广泛应用于自然语言处理、计算机视觉、推荐系统等领域,正重塑各行各业,是当前AI爆发的核心技术之一。
本项目提供四位一体的智能化期货预测解决方案:首先是多品种实时行情监控,支持黄金、白银、原油等10余种期货合约的实时价格、成交量、持仓量数据可视化展示,实现市场动态的全面把握。其次是WOA智能超参数优化,采用鲸鱼优化算法自动搜索LSTM网络的最佳超参数组合,显著提升模型预测精度和训练效率。第三是双算法
80PHP金融
1.具体功能模块:包含数据集构建、模型训练、情绪检测、结果统计四大核心模块。2.主要功能描述:数据集构建模块生成包含7类情绪的标准化人脸情绪数据集,输出结构清晰、可直接用于模型训练的emotion_dataset文件;模型训练模块基于PaddlePaddle框架实现数据预处理、模型搭建与训练,支持R
240Python人工智能
具体功能模块:包含缺陷检测、模型管理、模型训练、数据统计四大核心模块。主要功能描述:缺陷检测支持单张PCB图片上传实时检测、多张图片批量处理,可在原图上可视化标注缺陷位置,同时支持置信度阈值配置以平衡检测精度与召回率;模型管理可加载自定义训练的YOLOv8模型,支持导出ONNX、TorchScrip
300Python人工智能
1.项目具体功能模块:本AI智能问答系统基于LangChain+RAG技术架构,核心包含五大功能模块,分别是文档数据处理模块(负责多格式文档的解析、清洗、分块与预处理,支撑知识库构建)、向量知识库模块(实现文本向量化编码、向量存储与高效检索,对接主流向量数据库)、检索增强模块(基于用户问题进行语义检
240Python人工智能
为解决上述问题,我们提出DynamicSelf-VerifyDecoding(DSVD),一种面向实际部署的实时自校验生成框架,在不引入高昂外部验证成本的前提下显著提升模型输出质量。DSVD主要提供以下核心功能:实时生成质量自检在模型解码过程中,引入并行的自验证机制,对当前生成内容进行持续评估能够及
290Torch人工智能
一、多源分布式全网数据采集模块支持三大灵活采集模式,覆盖互联网全域文本数据(新闻、论坛、博客、微博),突破各类反爬限制,实现精准、高效、稳定采集:1.领域关键词采集:用户输入领域关键词+时间范围,分布式实时爬虫全网采集对应领域数据(如「华为产品分析2014.03-2014.05」);2.指定URL采
520NLP人工智能
一套集行为识别、数据服务与可视化管理于一体的课堂智能分析系统,主要功能包括:课堂行为智能识别基于YOLOv8模型对课堂视频或图片进行目标检测支持识别抄袭、分享答案、东张西望、使用手机、睡觉等多种课堂行为提供单帧检测、视频检测及实时流检测能力实时与离线分析能力支持摄像头或RTSP视频流的实时行为检测支
590Python人工智能
1.智能产词模块(SmartKeywordGeneration)该模块解决的是**“买什么词”**的问题。作为NLP算法工程师,这是你的核心主场。语义拓词:利用BERT或Embedding技术,基于当前高转化词的向量相似度,从词库或App元数据中挖掘意图相近的候选词。竞品词挖掘:通过爬虫或第三方接口
600Python人工智能
手写字符识别产品系统
1.模型训练提供轻量化、可配置的YOLOv8模型训练能力,支持n/s/m/l/x多尺寸模型选择,可自定义训练轮数、图像尺寸、批次大小等参数;自动检测GPU/CPU设备,优先使用GPU加速训练;针对Windows环境解决OpenMP库冲突问题,通过优化数据增强策略(降低mosaic、mixup概率)、
550Python人工智能
本项目基于B/S架构构建了一套综合视觉监测系统,主要包含以下具体功能模块:1.作物病害智能检测:利用YOLO11深度学习算法对视频流进行实时推理,精准定位并分类(如早疫病、细菌性斑点)番茄叶片病害,自动统计病害分布数据。2.人员安全与行为监测:基于YOLO-Pose姿态估计技术,通过检测框几何规则(
440Python人工智能
对此需求搭建了神经网络模型,用fab厂提供的工艺参数与传感器采集数据作为数据集,搭建神经网络预测在某工艺参数与实时传感参数下,会长出的晶体直径为多少,在具备足够的实时预测精后,应用于工业晶棒生产以获得具有稳定直径的晶棒
390Python机器深度学习
1、基于深度神经网络的reid技术​1.1)采用局部信息对齐技术进一步提高精度​1.2)Top1识别率达到89%,Top3达93%以上​,即匹配结果在前三名识别率93%1.3)自动区分幼体和成熟体,幼儿未发育完整,无明显特征,统一归为一类,一般通过其母进行跟踪2、QT开发的桌面软件通过XXX部海YY
500Python机器深度学习
在基于信号大数据的雷达辐射源调制研究中,利用MATLAB软件对目前已知的所有调制类型进行仿真建模。这是整个研究的基础步骤,为后续的图形处理和分类等操作提供数据支持。使用大量的图片对核心程序进行训练识别,让程序学习不同调制类型的特征。通过不断的训练,使程序能够准确地识别各种雷达信号的调制类型。
620Python机器深度学习
核心功能模块:AI识别引擎:基于MobileNetV2的迁移学习模型,支持6类水果状态实时分类RESTfulAPI服务:Flask框架提供标准化接口,支持HTTP/JSON通信图像预处理模块:自动尺寸调整、归一化、批量处理可视化测试界面:HTML5前端界面,拖拽上传即时反馈主要功能描述:单张/批量图
570Python机器深度学习
针对个性化图像生成需求,搭建基于DiffusionModel的生成式AI系统,解决特定风格下的小样本图像生成难题,实现高质量的“文生图”与“图生图”功能。
320Torch人工智能
探索集成学习算法在处理高维、稀疏招聘数据时的适用性,特别是针对"职位描述"等非结构化文本特征,研究文本特征工程的优化方法,为薪资预测领域的算法改进提供实证依据。同时,通过SHAP(SHapleyAdditiveexPlanations)解释框架,增强黑盒模型的可解释性,为可解释人工智能(XAI)在人
500Python机器深度学习
1、项目具体功能模块包含3大核心模块:①树莓派4B硬件控制模块(负责小车动力、转向的指令输出);②纯视觉场景标识识别模块(处理操场环境视觉数据);③场景决策与动作执行模块(根据识别结果输出操作指令)。2、项目主要功能描述:以树莓派4B为控制核心,搭载视觉设备采集操场环境信息,实时识别操场跑道线并实现
630EmbeddedSystem机器深度学习
图像采集与预处理模块核心缺陷检测与分类模块缺陷管理与人机交互模块系统控制与通信模块在高分辨率下扫描整个晶圆表面,在图像中检测出各个缺陷并进行分类。得到缺陷检测分类结果后画出mapping图和密度图、生成报告.
510C++人工智能
Todolist心墙 产品系统
1.Todolist日常事项处理2.基于MAB功能的虚拟好友货币交友竞拍功能3.交友模块,可以实现P2P的交流沟通,4.利用AI语意训练模块,猜测用户下一个todo要做什么.
490C++机器深度学习
项目包含三大核心模块:一是AI开发环境快速配置模块,提供Windows系统下Python虚拟环境创建、AI依赖包(TensorFlow、PyTorch)一键安装的命令行工具,自动解决依赖版本冲突问题;二是AI算法运行模块,支持机器学习模型(线性回归、随机森林)、深度学习基础模型的训练与推理,可上传数
470PHP机器深度学习
当前共1007个项目more
×
寻找源码
源码描述
联系方式
提交