机器学习/深度学习

1. 软件面向的行业和业务场景 该项目是基于强化学习的自我博弈模型,主要面向人工智能(AI)和机器学习领域,特别是在棋类游戏和智能对弈的应用场景。其核心目标是训练一个能够与人类对弈并不断优化策略的 AI 玩家。通过强化学习与蒙特卡洛树搜索(MCTS)相结合,这个软件可以应用于任何需要决策优化和策略训练的领域,如自动驾驶、金融预测、机器人控制等。 业务场景包括: 人工智能竞技游戏:用于训练 AI 玩家,模拟自我博弈,提升 AI 策略。 游戏开发与优化:游戏公司可以用该技术提升 NPC(非玩家角色)智能,增强游戏体验。 教育与研究:为机器学习和强化学习的研究者提供实用工具,帮助学习和理解深度强化学习的应用。 2. 项目分为哪些功能模块,对使用者来说具体实现哪些功能 该项目包括以下主要功能模块: Board(棋盘信息模块):该模块存储并管理棋盘的信息,定义了棋局的状态和每个玩家的操作。 MCTS(蒙特卡洛树搜索模块):用于构建决策树,通过模拟多次博弈来选择最优的落子策略。其核心思想是利用树状结构进行搜索,并根据模拟结果做出决策。 Residual Neural Network(残差
1410python机器学习/深度学习
架构设计。基础框架搭建,springboot+dubbo微服务架构 第三方底层框架集成。包括万科项目底层组件,云信直播、视频SDK 第三方业务系统集成。海尔单点登录集成,海尔用户中心注册、修改用户接口集成,对接海尔 COSMOPlat支付接口,对接海尔消息平台(短信),七鱼客服系统集成 核心业务模块。包括在线学习、直播、点播观看和管理,订单模块,支付模块 后台模块。包括用户管理,集团组织机构管理,用户权限(shiro),直播点播统计(ELK) 推流助手二次开发(c++)。对推流助手UI进行调整,添加了类似清晰度、直播暂停、恢复等功能 海尔COSMOPlat项目部署,基于k8s平台的docker镜像部署 基于pytorch开发、训练的AI搜索助手
1940Java分布式应用/网格
1、项目应用于无人车在行进过程中对道路进行正确的识别,便于有效避障 2、功能主要是提取图像信息中的有效特征,实现道路与周围环境的分割,并将道路与环境通过二值图标注出来 3、主要框架为图像增强、特征提取、特征分析、特征降维、贝叶斯多线索融合机制、图像降噪
1550python计算机视觉库/人脸识别
我是一名专注于深度学习和人工智能领域的软件工程师,拥有丰富的实践经验和扎实的技术背景。我擅长使用 Python 进行编程,并在图像处理和自然语言处理领域有着深入的研究和实践。我曾成功应用深度学习模型于新闻文本分类、人体姿态识别项目以及图像分类检测等任务。 项目经验 新闻文本分类系统: 行业应用:媒体、出版、内容分析 功能实现:自动化新闻内容分类,个性化新闻推荐,内容审核 技术亮点:利用预训练模型 BERT 提升分类准确性,支持多类别文本分类 人体姿态识别系统: 行业应用:健康监测、运动分析、安全监控、人机交互 功能实现:运动训练分析,老年人跌倒检测,异常行为识别 技术亮点:实时数据处理,高准确性的姿态识别算法,易于集成的 API 设计
2240python网络爬虫
自动完成发票查验,无需输入验证码,提供发票查验界面和webapi接口,方便于现有系统集成,查验速度2秒以内,可以免费体验,有任何需求和建议可以发给我。
2130机器学习/深度学习
西红柿品种识别源文件源码
基于YOLO V5的西红柿品种检测平台是一个高效、用户友好的软件,它能够快速上传和处理图像,准确识别西红柿的不同品种,并通过直观的界面展示识别结果。平台支持批量处理和数据导出,同时平台具有百科全书,通过各种方法来向用户展示西红柿的各种科普知识、前世今生、品种分布、销售统计,此外,它还具备易于集成的API接口和全面的客户支持服务。 采用先进的YOLO V5深度学习模型,该模型以其快速、准确的目标检测能力而闻名,特别适合于图像识别任务。通过训练和优化模型,实现了对西红柿品种的高准确率识别,减少了误判和漏判的可能性。
880机器学习/深度学习
某企业AI智能客服项目旨在利用人工智能技术,为企业打造一个高效、智能的客户服务系统。该项目通过模拟人类客服的对话方式,与用户进行实时交流,解答用户的问题、提供帮助和建议,从而提升企业服务效率、降低运营成本,并增强用户的满意度和忠诚度。 一、模块组成 智能问答模块:基于自然语言处理、深度学习等技术,对用户的问题进行识别、分析和回答。该模块能够准确理解用户意图,提供精准的答案和解决方案。 用户交互模块:负责与用户进行实时对话,包括语音、文本等多种形式的交互。该模块通过语音识别、语音合成等技术,实现与用户的语音交互;同时,也支持文本输入和输出,方便用户进行文字交流。 知识库管理模块:存储和管理企业的各类知识、常见问题及解决方案。该模块支持知识的动态更新和维护,确保智能客服系统能够随时提供最新、最准确的信息。 数据分析模块:对用户行为、问题类型、服务效果等数据进行收集和分析,为企业提供有价值的业务洞察和改进建议。 二、使用到的技术 自然语言处理技术:用于将用户的语言转化为机器可理解的形式,从而能够准确理解用户的需求和问题。通过分词、词性标注、句法分析等处理,提取出用户问题中的关键
4041Java人工智能
1. 学生端APP图书阅读打分、学习任务、课程功能、直播功能、发现功能、学习报告、积分商城、卡牌、评级测试、加入学校、消息推送等功能规划; 2、带领团队从0开始搭建各端功能,APP版本在三年多的时间里由1.0版本迭代到3.7.0,用户数量累计达到80万;
1910PHP机器学习/深度学习
通过时间序列ARIMA、循环神经元LSTM等算法对大盘进行预测 通过大数据、统计等算法对股票进行预测 PHTHON C++ VS/VSCODE
2680脚本编程语言
深耕网络安全行业,负责的产品包括有SASE、云防火墙、云WAF、NDR和运维中心。 该作品主要展示PC端常用的Axure原型设计组件,辅助产品经理加快需求设计进度,细化产品原型文档、提高与前后端研发的交流沟通效率。
910安全相关框架
基于LangChain + 开源 LLM构建个人知识库,用 LangChain 对文档进行向量化,然后检索内容,在调用 LLM 对得到的内容进行总结输出
3950python机器学习/深度学习
基于人脸关键点框架获取到400+人脸3D关键点数据,并绘制到人脸上。 关键点数据覆盖:眼周、瞳孔、鼻子、额头、内外嘴唇…… MediaPipe
1890计算机视觉库/人脸识别
对于重点交通路段的车辆信息进行监测和违法取证。 亮点分析: 1、使用后台线程处理视频帧: 创建了 VideoProcessor 线程类,用于处理视频帧和检测。 通过信号 frame_processed 将处理好的帧和入侵信息传递回主线程,避免主线程阻塞。 2、硬件加速: 确保在OpenCV中使用硬件加速解码(这部分需要确认OpenCV的安装支持硬件加速)。 3、非极大值抑制优化: 使用 cv2.dnn.NMSBoxes 函数进行非极大值抑制,提高检测框的准确性。 4、异步任务: 将繁重的计算任务放在后台线程中执行,提高主界面响应速度。
1860python计算机视觉库/人脸识别
项目主要是在DETR系列目标检测算法的基础上进行改进的,将其与多模态模型进行融合,将单模态目标检测算法改进为多模态目标检测算法,实现检测能力和识别能力上的提升。
4210图形/图像处理
基于关键点提取框架获得人体30多个关键点坐标信息,选择向量夹角作为度量标准。提供10余种不良坐姿检测功能。 MediaPipe
1730机器学习/深度学习
当前越多越多的业务开始使用多模态大模型,尤其是视觉-语言预训练模型。在实际使用中,我们通常需要对预训练模型进行调优来适配实际的业务场景,而这需要大量的资源介入且费时费力,尤其是对视觉基座的调优在资源有限的情形下几乎是不可行的。本项目探索了在不调优视觉基座的前提下,仅通过对语言端进行调优并优化推理过程,实现语言增强的零样本多标签分类任务 (Zero-shot Multi-label Classification)。本项目为国际比赛获奖项目。
2150图像(Image)
⚫ 开发了一个用于地震后建筑物的损坏等级的预测系统。通过搭建自编码器(Autoencoder,ANN),对数据中地理坐标数据进 行特征工程,提取并加强了地理特征。 ⚫ 基于集成方法构建并训练了由随机森林,XGBoost 和 LightGBM 构成的模型来做预测, 取得了最高F1-score 75.32%,位 列前30名。
1370机器学习/深度学习
元创智能AI源文件源码
本项目面向学生,使用相关AI技术完成对学生的考试评估,以及与AI智能对话 提供智能绘图 帮助学生定位自己薄弱知识点,也能够出相关题目,帮助巩固自己薄弱的知识点.还有视频课拱学生学习. 还具备先进的拍照解题功能,只需上传题目照片,便可得到答案.
1230机器学习/深度学习
领界AI源文件源码
该软件主要帮助客户开发对AI知识库的运用,使用客户产品知识库训练大模型回答相应问题,还能根据客户的语义,生成相应的图片(文生图、图生图)。 该项目主要分三大块,智能AI对话、智能生图、群聊功能,对于客户来说,主要解决了学生在机构中了解到机构的基本背景,通过机构的课程学习,能够使用app实现图片的生成,还能通过群聊与机构老师进行沟通。 该项目主要通过本地部署大模型(langchain+通义千问)实现智能对话,stablediffusion实现智能生图,通过调用腾讯即时通讯实现群聊功能,主要特点是大部分功能都通过开源框架本地部署来实现,能够节约外部调用api的费用。
1120Java机器学习/深度学习
在采样过程中通过顶棚摄像头图像,识别出车辆的车厢位置及拉筋信息,为采样提供定位坐标,广泛应用于火电厂、冶金行业、焦化厂等。
2271计算机视觉库/人脸识别
当前共572个项目
×
寻找源码
源码描述
联系方式
提交