基于视觉的人群计数算法设计

我要开发同款
Xc_dream2025年06月26日
23阅读

作品详情

本程序致力于提供一个强大且实用的人群计数工具,其核心目标在于精准地检测图像或视频流中出现的人体目标,并高效地统计其数量。为实现这一任务,程序采用了当前深度学习领域的主流框架——PyTorch,构建并部署了一个经过优化的YOLOv3 (You Only Look Once, version 3) 目标检测模型。YOLOv3 被选为本程序的核心算法,主要得益于其卓越的性能平衡。作为一种单阶段(one-stage)检测器,YOLOv3 以其显著的速度优势闻名,能够在保持较高检测精度的同时,满足实时处理的需求。其核心原理是将目标检测视为一个回归问题,通过单次前向传播即可预测图像中所有目标的边界框位置及所属类别概率。本程序特别利用了 YOLOv3 的 Darknet-53 骨干网络提取深度特征,并结合其多尺度预测机制(在三个不同尺度的特征图上进行检测),使其能够有效应对人群计数中常见的尺度变化大(如近处个体大、远处个体小)和密集遮挡等挑战,精准捕捉不同大小的人体目标。
声明:本文仅代表作者观点,不代表本站立场。如果侵犯到您的合法权益,请联系我们删除侵权资源!如果遇到资源链接失效,请您通过评论或工单的方式通知管理员。未经允许,不得转载,本站所有资源文章禁止商业使用运营!
下载安装【程序员客栈】APP
实时对接需求、及时收发消息、丰富的开放项目需求、随时随地查看项目状态

评论