本代码基于YOLO(You Only Look Once)算法实现了高效的车牌识别系统。YOLO作为单阶段目标检测模型,通过卷积神经网络同时预测边界框和类别概率,显著提升了检测速度。系统首先利用YOLO模型定位图像中的车牌区域,随后通过OCR技术识别车牌字符。实验表明,该方案在复杂场景下仍能保持较高的准确率和实时性,平均识别精度达90%以上,单帧处理时间低于50ms。该方法克服了传统车牌识别算法受光照、角度影响的缺陷,为智能交通、车辆管理等应用提供了可靠的技术支持。
点击空白处退出提示
语言技术
Torch
本代码基于YOLO(You Only Look Once)算法实现了高效的车牌识别系统。YOLO作为单阶段目标检测模型,通过卷积神经网络同时预测边界框和类别概率,显著提升了检测速度。系统首先利用YOLO模型定位图像中的车牌区域,随后通过OCR技术识别车牌字符。实验表明,该方案在复杂场景下仍能保持较高的准确率和实时性,平均识别精度达90%以上,单帧处理时间低于50ms。该方法克服了传统车牌识别算法受光照、角度影响的缺陷,为智能交通、车辆管理等应用提供了可靠的技术支持。




评论