该项目的目的是通过人体表面肌电信号识别特定手势,数据来源于kaggle平台的公开数据集EMG Signal for gesture recognition,其中的数据来自不同的用户,每条数据的核心信息为8个channel。
训练过程中,使用2个卷积层提取特征,再经过2个GRU层,最后进行全连接。此外,训练集中的肌电信号被录者不会出现在测试集中,即训练集与测试集的用户不同。经测试,未经过针对某特定用户进行训练所得到的预训练模型,最终的正确率大约在85%左右,而针对特定用户训练后,模型正确率可达98%以上。