为了提高边缘计算设备对植物叶片病害检测的识别速率, 本研究采用卷积神经网络搭建了植物叶片目标识
别模型和植物叶片病害分类模型, 并且使用 OpenCV 将两个模型整合成植物叶片病害检测系统. 通过 SSD (single
shot multibox detector) 算法对植物叶片的目标区域进行定位并裁剪, 再利用植物叶片病害分类模型对裁剪的植物
叶片区域进行病害分类. 同时, 通过 TensorRT 加速推理对分类模型进行优化处理, 以及在同一台主机设备和 Jetson
Nano 计算平台上, 对优化前后的模型进行了对比实验. 实验表明, 在同一主机设备上优化后的植物分类模型识别速
率提升 22 倍. 同时, 优化后的分类模型使植物叶片病害检测系统识别速率提升 7 倍. 而将优化后的系统部署在
Jetson Nano 计算平台上, 对比优化前的植物叶片病害检测速率提升 10 倍, 实现了实时的植物叶片病害检测。