Python

Python是一种广泛使用的解释型、高级和通用的编程语言,[1]由荷兰数学和计算机科学研究学会的Guido van Rossum创造,第一版发布于1991年,它是ABC语言的后继者,也可以视之为一种使用传统中缀表达式的LISP方言。[2]Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。Python支持多种编程范型,包括函数式、指令式、结构化、面向对象和反射式编程。Python解释器易于扩展,可以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python也可用于可定制化软件中的扩展程序语言。Python
Python语言框架
Python是一种广泛使用的解释型、高级和通用的编程语言,[1]由荷兰数学和计算机科学研究学会的Guido van Rossum创造,第一版发布于1991年,它是ABC语言的后继者,也可以视之为一种使用传统中缀表达式的LISP方言。[2]Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。Python支持多种编程范型,包括函数式、指令式、结构化、面向对象和反射式编程。Python解释器易于扩展,可以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python也可用于可定制化软件中的扩展程序语言。Python
开发组织  吉多·范罗苏姆
项目已经开源在GitHub中https://github.com/BoliboliWJY/trendline-trading,可具体查看内容可以计算,过滤试试行情数据
130Python金融
全市场投管人收益表数据获取方案简介 1. 方案目标与解决问题 本方案主要面向**保险股份有限公司,旨在解决其在获取外部网站数据时遇到的效率低下和数据处理困难等问题 。具体来说,该方案自动化了从多个外部网站获取“年金基金投资管理”相关数据并将其写入指定Excel表格“全市场投管人收益表”的过程 。这大大减少了人工操作的耗时,将原本可能需要人工耗时数月的工作,通过技术方案将时间控制在可管理的范围内。 2. 方案特点与优势 相比于市场上的常规方案,本方案的独特之处在于其采用RPA+Python的混合技术方案,并兼顾了效率、成本和技术可行性。 RPA+Python混合方案:传统的RPA方案(方案1)在识别合并单元格时会出现数据错乱的问题,而纯Python方案(方案3)则需要熟悉复杂的数据分析和网页获取技术,且未用到RPA和IDP 。本方案将RPA(机器人流程自动化)和Python语言相结合,利用RPA处理网页访问、标题链接打开等操作,然后由Python读取RPA处理后的数据进行复杂的表格数据获取和联表查询,最后再将Python代码作为插件导入RPA中进行整体流程的调试和测试 。 高效性与高投入产出比:该混合方案避免了纯RPA方案中因处理页面元素耗时过长导致效率低下的问题,也规避了纯Python方案的技术难度 。例如,在获取80个网站数据的情况下,纯RPA方案预计需要240天左右,而本方案在确保数据准确性的同时,预计总用时仅为110天,大幅提高了效率 。 自动化录屏:流程运行后,方案能够自动生成录屏文件,便于客户直观地了解和验证流程运行情况,并能将生成的数据文件直接发送给客户 。 3. 方案技术组成 该方案主要由以下技术组件构成: RPA:用于自动化网页操作,例如访问指定网站、打开符合规则的标题链接等. Python:用于处理复杂的数据操作,包括读取RPA处理的数据、访问链接、获取表格数据、联表查询,以及将处理后的数据写入Excel文件. 配置文件:用于存放需要打开的网站标题、链接和规则等信息,以便于管理和维护.
590PythonIT
区块链期权套利系统 - 搭建高并发底层数据架构,接入交易所API采集数据并整理入库。 - 搭建 风险管理系统,构建 不同情况下的 Greeks 推演、Cash PnL 归因分析、VRP时序计算等。 - 设计 BS modol、PM 矩阵、Monte Carlo 三者相结合生成风险路径,并计算其依赖程度。 - 搭建 Outgoing robot 做风险预警,Grafana 做风险推演后的可视化报表。 - 构建 stochastic volatility 套利策略,以 SABR 模型为基础,搭配 LM 算法约束后拟合短期限的 3D 隐波曲面,识别其中潜 在的凸性套利机会进行交易。 - 构建 vrp 波动率套利策略,使用 静态对冲 做 厚尾增强 处理,并辅以 auto ddh 控制敞口。
820Python区块链
以银行需求为主导、金融科技为基石的系统搭建。通过充分利用内部数据资源和经验,结合先进的风险预警、控制和管理技术,成功构建了适用于银行内部需求的全渠道自主账户风险管理系统。 核心能力和业务实践: 1. 系统架构与设计:领导团队设计系统架构,根据业务需求设计了高效的大数据框架和ETL模式,并编写了详尽的设计文档。 2. 风险数据管理:建立了账户风险数据底座,整合并优化了行内账户数据资源和风险事件库,以支撑全周期的风险监控和管理。 3. 灵活预警规则与模型构建:搭建了配置灵活的风险预警规则引擎,针对不同业务场景灵活配置规则,并基于机器学习和大数据分析构建了账户风险模型,不断提高预警准确性。 4. 系统展示与数据分析:设计了全行、全渠道和全业务场景的账户风险大盘展示系统,支持多维度的数据分析,为高效风险监控和策略调整提供数据支持。 业绩: 带领团队设计架构,分析业务需求,设计大数据框架,设计ETL模式,编写相关设计文档,数据查询优化,及时预警等系统架构,最终成功交付。
2060java金融
1.本方案是针对银行的大量业务数据留档使用,是针对数据库(DB2)中的DPF分区数据库以及分区表,为基础架构,根据业务的情况对物理层和逻辑层的架构设计。主要是为了快速的数据响应。 2.DB2数据库主要的就是数据的安全性以及稳定性。相比其他类型的数据库而言,可能没有快速的响应,但是在架构的优化调整之后,与其他的数据库软件的性能可以比肩,同时还具有更高的安全性和稳定性,为此在金融行业来讲,只要针对当前的业务情况进行针对性的优化之后。作为核心数据库的保留存储库要优于其他数据库软件。
1680python金融
ai板块轮动产品系统
1.面向投资者的一款小程序,推荐热门板块和盈利希望的股票 2.大量数据训练模型,包含股票市场历史数据和新闻情绪数据。准确预测周频月频股票,实现盈利。根据当前实时股票数据和市场,智能分析选择的股票的情况,帮助客户选择。
1320python金融
项目描述: 该系统主要是进行股票的量化交易,使用springboot+jquery+layui架构,主要分为股票开仓,策略配置,自动下单等相关业务模块儿。 个人职责: 该项目前后端均由本人一人完成并自测交付。
3470java金融
此项目能获取股票历史日线数据,查看相关报表和K线图,提供理财计算工具和基础学习,帮助用户理性理财。使用技术有:股票分析仿真系统前端用的 C++语言的MFC框架,后端是C++和Python语言进行逻辑处理,数据库用的是SQLServer,数据库连接用的是Dao技术。
7471C/C++金融
当前共8个项目
×
寻找源码
源码描述
联系方式
提交