Python

Python是一门诞生于1991年的高级、解释型编程语言,由吉多·范罗苏姆创造。其核心设计哲学强调代码的极简性和可读性,尤其依赖清晰的缩进来定义代码结构,这使得它语法接近英语,非常易于学习和使用。作为动态类型语言,它为快速开发和原型设计提供了极大的灵活性,并支持面向对象、命令式、函数式等多种编程范式。Python的巨大优势在于其拥有一个由庞大活跃社区支撑的丰富第三方库生态系统(PyPI),覆盖了几乎所有应用领域:无论是Web开发(Django, Flask)、数据科学(Pandas, NumPy, Matplotlib)、人工智能(TensorFlow, PyTorch)还是自动化脚本和系统运维,都能找到成熟高效的工具库。这种“开箱即用”的特性使其成为解决各类实际问题的“瑞士军刀”,兼具强大的功能与简单的语法。
Python语言框架
Python是一门诞生于1991年的高级、解释型编程语言,由吉多·范罗苏姆创造。其核心设计哲学强调代码的极简性和可读性,尤其依赖清晰的缩进来定义代码结构,这使得它语法接近英语,非常易于学习和使用。作为动态类型语言,它为快速开发和原型设计提供了极大的灵活性,并支持面向对象、命令式、函数式等多种编程范式。Python的巨大优势在于其拥有一个由庞大活跃社区支撑的丰富第三方库生态系统(PyPI),覆盖了几乎所有应用领域:无论是Web开发(Django, Flask)、数据科学(Pandas, NumPy, Matplotlib)、人工智能(TensorFlow, PyTorch)还是自动化脚本和系统运维,都能找到成熟高效的工具库。这种“开箱即用”的特性使其成为解决各类实际问题的“瑞士军刀”,兼具强大的功能与简单的语法。
开发组织  吉多·范罗苏姆
1.机器派发为了减轻人工派单压力使用AI机器学习技术训练模型,对新产生的投诉案件的投诉内容通过中文文本分类算法,预测所属的对应的案件类型和所属部门为90以上,以达到热线派发精准分类,便将任务自动直接派发。2.辅助派发在机器预测值不足90时,还是由人员进行手工派发,派单员手工派单时,系统也会给出三个派
110Python机器深度学习
1、数据爬取。利用爬虫程序模拟人类浏览行为,遍历目标网站,收集并整理所需数据。遵守法律法规和网站规则,尊重隐私政策,避免对目标网站造成不必要的负担。同时,还注重数据的准确性和完整性,确保爬取到的信息具有实际应用价值。2、数据分析。通过数据挖掘和机器学习算法,数据分析发现隐藏的价值,推动业务创新和发展
500Python机器深度学习
1.利用Wireshark和数学工具深入分析运营商及学校的核心网关,研究公开的隧道式网络协议。通过Python和C++编写的高性能即时部署脚本,模拟手机和电脑等终端,实现对各类终端的公开和非公开网络协议的识别。2.负责对大量网络基础协议包内容(非包头)进行数学分析,验证全新的拦截规则与误杀概率。这一
640C++网络安全
开放域视觉定位:支持通过自然语言指令,在图像中定位任意指定的物体、人物或场景元素。思维链增强推理:利用大模型的内在推理能力,通过多步思考提升复杂场景下的定位准确性。参数高效微调:采用LoRA技术对Qwen2.5-VL-7B模型进行微调,仅训练少量参数即可显著提升在目标领域的效果。完整训练流水线:实现
1210Python人工智能
1.分为端面缺陷检测以及内部缺陷检测两种;2.导入深度学习算法,对相似度比较近的缺陷进行分类;3.算法实现了对产品表面的各种各样的缺陷进行抓取、分类;4.为客户提供过漏检数据、缺陷分类数据,让客户可以根据数据对前端工艺进行优化修改,提升产能。
881C++机器深度学习
项目特色:1.自适应检索策略:根据本地文档数量自动选择本地检索或Elasticsearch检索,支持运行时强制切换。2.多版本演进:从基础命令行版本延展到多个WebUI版本(简洁版、增强版、图像增强版、ESRAG版本等),满足不同部署和交互需求。3.混合检索与网络补充:优先使用本地知识库,缺失时可通
980Python人工智能
项目主要分三部分:controlHFSS,CNN_FC,predictcontrolHFSS负责调用接口,通过脚本控制Ansys-HFSS生成部分随机的电磁结构并进行仿真,并导出表格数据,最后整合为“特征+标签”的数据集以供后续使用;CNN_FC负责对数据进行预处理操作并进行卷积神经网络模型训练;p
890Python机器深度学习
项目介绍:本项目旨在解决复杂网络中的链路预测问题及增强模型的可解释性,提出了一种结合图神经网络(GNN)和贝叶斯网络的创新框架。通过多层次的图神经网络提取节点的局部和全局结构特征,并结合节点属性信息,利用贝叶斯网络进行概率推理,在SCHOLAT数据集上实现了93%的准确率,在YST数据集上实现了81
800Python人工智能
●项目介绍:本项目设计并实现了一个从单张人脸图像预测BMI的端到端系统。我们自行爬取数据并制作数据集,设计并实现了一个轻量级CNN。最终,模型在独立测试集上取得了4.39的平均绝对误差(MAE),并使用Flask框架将其封装成一个可交互的Web应用,完整实现了从数据获取、模型训练到服务部署的全流程。
970Python人工智能
1.基础蒸烤功能模块实现蒸、烤、蒸烤组合等核心烹饪功能温度控制(室温至最高温度的精准调节)时间设定与控制多种预设烹饪模式(如烘焙、烤肉、蒸鱼等)安全保护机制(过热保护、超时保护等)2.菜谱功能模块内置多种菜品的菜谱数据库菜谱分类与检索功能分步烹饪指导食材与调料用量建议用户自定义菜谱存储与分享3.摄像
890Python人工智能
闪测仪软件产品系统
同一型号零件进入工业相机(固定帧率)视野范围内时,系统对其进行检测,区分零件的各个面拍照并进行标识,随后进行尺寸检测及,表面缺陷检测。零件旋转翻转后,系统通过抓取到的图片再次进行检测并进行表示。检测结果将以时间-批次-面-缺陷类型-缺陷图片存档进行保存并返回上位机。
460C++机器深度学习
非接触式监测:使用医用级摄像头对保温箱内早产儿进行持续视频采集,避免传感器接触对婴儿造成的刺激深度学习姿态识别:基于改进的YOLOv4/YOLOv5算法,实现对早产儿关键身体部位(头部、四肢、躯干)的精准定位和姿态分类异常行为检测:通过时序分析识别异常姿态模式(如持续性异常体位、活动减少等),及时预
740C++人工智能
平台包含以下核心功能模块:VeriMind™AI引擎:智能方案生成、需求分析、团队匹配、成功率预测、项目Copilot助手三端服务系统:企业端(需求发布、项目管理、财务中心)、学生端(项目大厅、任务看板、个人档案)、高校端(资源管理、设备预约、项目监督)交易与激励系统:分阶段支付托管、钱包管理、VI
1090Python人工智能
主要对xx平台的视频质量评估项目进行需求拆解、数据处理、业务快速理解,最终给出评判一个视频质量高低的因素。从统计学角度和机器学习角度两方面进行分析和建模,给出了统计学结果和机器学习模型结果,并根据结果进行了效果验证和详细的数据分析,针对从数据模型表现上发现的一些异常点,给出了业务解释和业务指导,整体
760Python机器深度学习
数据分析作品产品系统
针对业务现状,业务各维度分析,核心结论和建议,数据驱动,由数据发现业务问题。针对业务现状,业务各维度分析,核心结论和建议,数据驱动,由数据发现业务问题。针对业务现状,业务各维度分析,核心结论和建议,数据驱动,由数据发现业务问题。
490Python电商
该系统支持遥感图像上传与管理、多模型(如RT-DETR、YOLO系列)目标检测任务动态调度、检测结果可视化标注,并集成本地大模型(如DeepSeek-R1、Qwen3.0、Gemma3)对识别结果进行语义理解与专业解读,例如生成地物分类报告、变化检测分析或应急响应建议。同时提供用户权限管理、任务历史
1830Java人工智能
1.自动爬取下载信息,将人工流程的点击,复制粘贴等操作全部通过脚本实现。2.“AI建议”与“AI决策”双模式切换,AI建议模式通过AI预测和人工筛选结果进行模型增量学习。AI决策模式实现全流程自动化,并设计阈值,将模糊AI无法判断的博主保存到人工复审数据库。设计复审功能,人工审核模糊的博主3.设计数
900Python机器深度学习
1.支持实时的对话服务(Real-timeCrawlerIntegration)功能描述:对话系统不再仅限于其内置的静态知识。当用户的提问涉及最新事件、实时数据或特定网站内容时,系统可通过集成的实时服务,动态地从互联网上获取最新信息。价值:彻底解决了大模型知识陈旧、无法回答时效性问题的痛点,使服务能
6330Python人工智能
基于convLSTM实现流场图片信息的三维重构和预测,输入观测图像可以将图片进行分类,和识别图片中的微幅波。 实现三维动态流体的实时测量,结合深度学习和传统数字图像处理中的数字图像相关法,可以实现对于力学中变形和拉伸过程中物理参数的快速实时观测,并基于此实现微米级别的工业视觉测量场景,不仅能适应自然生活中的深度测量需求,还能实现对于微米级别的工业仪器测量的要求。
1280python人工智能
快手推荐系统产品系统
面向国内亿级短视频用户构建推荐系统,提升主站精排和海外APP的用户消费时长。 在特征工程的基础上,采用时长互动目标mmoe+长短期期兴趣序列sim架构,相比传统的DNN结构,提升效果明显。 搜推联动项目,结合搜索和推荐两大展位用户数据,优化不同场景下的时长。
3330python人工智能
当前共23个项目more
×
寻找源码
源码描述
联系方式
提交