机器深度学习

机器学习,深度学习是人工智能的核心分支,致力于让计算机系统通过数据驱动的方式自动学习和改进性能,而无需显式编程。其核心是从数据中识别模式或规律,构建数学模型,使计算机能完成预测、分类、聚类等任务。主要类型包括监督学习、无监督学习和强化学习。机器学习广泛应用于自然语言处理、计算机视觉、推荐系统等领域,正重塑各行各业,是当前AI爆发的核心技术之一。
基于国内外通用大模型OpenAI、千问、DeepSeek,结合几何造型引擎,搭建基于AI的工业设计: 1、以“交付结果”代替“给予工具”为目标; 2、基于自然语言作为优先交互方式; 3、创建可修改、可编辑的BRep三维图形,而非拟合式三角面的固定三维特征; 4、交付工业级图形应用; 5、当前以包装设计为应用点进行展示。
520C/C++图形和图像工具
金融数据大模型分析平台是一款集实时新闻分析、股票监控和市场趋势预测​​于一体的专业工具。通过整合新浪财经新闻与天勤量化行情数据,结合大模型智能分析能力,为投资者提供:  实时金融新闻与AI影响评估  板块关联性分析与股票筛选  全市场监控与可视化统计  异常波动股票实时预警 平台采用​​多进程架构​​(新闻处理 + 股票监控并行),确保数据获取与分析的高效性 盘前部分: 一、建立负面清单,剔除不交易的个股 剔除st股、北交所、市值低于20亿、上市交易不足180日的股票 二、板块个股分类,每一个票更新热点概念和所属板块 1、分析当日涨停票的涨停原因,以及所属板块 三、盘前重点新闻分析 1、通过新浪财经新闻24小时获取新闻,在早上9点25前对前日15点后到当日9点半的新闻进行分析; 2、同步分析对应板块的个股的上涨情况,如果有涨幅超过5%的股票的板块,罗列该板块5只涨幅最大的股票; 盘中: 一、建立数据库,实时通过新闻热点 API 获取信息,归档到数据库 1、通过新浪财经新闻24小时获取新闻,每30秒更新一次,分析对应利好的板块; 二、热点相互通信,匹配最佳个股 2、同步分析对应板块的个股的上涨情况,如果有涨幅超过7%的股票的板块,罗列该板块5只涨幅最大的股票; 如果有没有涨幅超过7%的股票,则系统继续跟进;有的话重复前述操作;没有则持续跟进到当日收盘。
3880Python机器学习/深度学习
1. 本软件使用了前后端分离技术,前端使用 QML/JS 使其界面开发快,迭代快,后端使用 C++/Qt 框架,处理数据性能高; 2. 软件的产品简介:针对穿戴式运动心电信号(精度有限、易受噪声干扰),结合统计域分析、频谱分析、图拉姆角场(Gramian Angular Field, GAF)图像转换三种方法,以下是 12 个易提取、抗噪声能力较强的特征指标,涵盖心率、呼吸率、心率变异性等核心信息。
690C/C++GUI开发框架
1. 产品面向科研院所,解决了自动处理遥感图像,自动识别机场和飞机的需求。 2. 相比市场常规方案,此方案具有速度快,识别准确的特点。 3. 方案用到了opencv的图像处理算法,包括图像增强,图像分割。用到了matlab实现的注意力算法,用到了tensorflow架构实现的图片分类和目标检测模型.方案的部署采用了docker技术.
1180C/C++图形/图像处理
双能X射线全身骨密度系统由上位机软件、STM32、FPGA组成,主要由上位软件进行扫描测控。技术包括操作系统原生Socket进行通讯、自主设计通讯协议设计与解析、骨密度算法实现/验证,线阵探测器图像重建、图像处理(降噪、增强、ROI分割)、深度学习训练以集成、软件架构设计、项目搭建、软件开发(QT)等。
730C/C++C/C++开发工具
ADAS(Advanced Driver Assistance System,高级驾驶辅助系统))是一套集成传感器、算法和车辆控制技术的智能化系统,旨在通过实时环境感知、风险预警和部分自动化控制,显著提升行车安全性、驾驶舒适性和能源效率。作为自动驾驶(L1-L3级)的核心技术基础,ADAS已成为现代智能汽车的标配,并逐步推动汽车产业从“被动安全”向“主动智能”转型。
630C/C++机器学习/深度学习
本项目主要开发设计了基于yolov11+SE的垃圾分类系统,本系统集成yolo模型以及引入se注意力机制,开发了一款app,界面简约,功能完善。可以用来学习如何调用yolo模型!以下是摘要介绍: 在当今这个城市化快速发展的时代,城市里的生活垃圾产量一直在持续不断地攀升,传统的人工进行垃圾分类的方式,它的效率特别低下,而且分类的准确性也不怎么高,很难契合现在资源循环利用以及环境保护方面的需求。本系统专门设计并且实现了一个基于深度学习的生活垃圾分类目标检测系统,这个系统借助了比较先进的图像识别技术,能够实现垃圾的自动化精准分类。凭借这样的分类方式,就可以提高垃圾分类的效率,还可以降低对环境的污染,促进资源的循环利用,在系统开发的过程当中,凭借多种不同的渠道去收集数据,把公开的数据集进行整合,收集到的数据经由去噪、标准化以及数据提高等一系列的预处理操作之后,按照7:2:1的比例划分成训练集、验证集和测试集,系统选用了YOLOv11模型,并且结合SE注意力机制来进行特征提取和模型训练,还利用Pytorch库对特征选择进行优化。在系统架构方面,前端是基于Vue.js框架来构建交互界面的,后端运用Flask框架来处理业务逻辑,搭配MySQL数据库来管理数据,这样就能实现实时检测、结果统计展示以及用户交互等功能,经由测试可以得出,这个系统对四类垃圾的分类精确度能够达到88%以上,就算是在复杂的环境之下,它仍然可以保持比较高的检测稳定性,有效地推动了垃圾分类智能化的发展,有很不错的应用前景。
1990PythonAPP
1.本方案面向使用三坐标测量机(CMM)进行工业测量作业的技术人员,特别是在高精度、重复性操作场景中工作的一线测量员。传统测量流程需频繁使用鼠标键盘进行操作,效率低且容易出错。该语音助手系统通过自然语音交互替代传统输入方式,显著简化操作流程,解放双手,提高测量效率,并减少人为误操作的可能性,特别适用于复杂环境下的辅助操作和高频重复任务。 2.完全本地化运行:无需联网,适用于厂房、保密实验室等网络受限环境,保障数据安全。 高定制化指令系统:内置约60条基础指令,支持模糊语义识别与上下文理解,结合测量业务深度优化。 跨平台集成能力:通过 Python 调用 COM 接口与三坐标测量软件深度集成,可快速部署到现有工业系统。 大模型推理:加入大模型增强语音推理,提升智能化 人性化语音反馈机制:集成本地 TTS(语音合成)模块,增强交互感与用户体验,贴近手机语音助手的使用习惯。
960Python机器学习/深度学习
主要面向企业数据分析师、知识工程师、AI 研发团队以及希望构建智能问答系统、知识管理平台的机构。在知识图谱及动态数据问答分析需求日益增长的背景下,当前知识大脑构建存在诸多痛点:知识建模缺乏灵活且标准化的工具,导致知识结构混乱;知识编辑效率低,难以快速更新与修改;不同来源数据难以融合,形成数据孤岛;数据接入渠道单一,无法适配多样化数据源;数据入图过程复杂,耗时长;数据标引不精准,影响知识检索与应用;知识图谱底层存储性能不足,无法满足高并发、大规模数据存储需求。本方案旨在一站式解决知识大脑构建环节中的这些问题,提升知识管理与应用效率。​ 2.【50%】相比于市场常规方案,本方案有哪些特点​ 一体化全流程覆盖:市场常规方案往往只能解决单一环节问题,如仅提供知识图谱存储或数据接入功能。而本方案涵盖知识建模、编辑、融合、数据接入、入图、标引及底层存储等全流程,各模块紧密配合,形成完整闭环,大幅提升知识大脑构建效率。​ 高度灵活与可扩展性:知识建模模块支持自定义多种知识结构模板,可根据不同行业、业务需求快速调整;数据接入模块兼容关系型数据库、非关系型数据库、API 接口、文件等多种数据源,且能轻松接入新的数据源类型;底层存储可根据数据规模动态扩展存储节点,适应数据量增长。​ 智能高效:知识编辑模块配备智能辅助编辑功能,如自动语法检查、语义关联推荐等,提高编辑效率;知识融合利用机器学习算法,自动识别数据间的关联与冲突,实现高效融合;数据标引采用自然语言处理与深度学习技术,实现自动化、精准化标引。​ 高性能存储与查询:底层存储采用分布式图数据库技术,相比传统方案,在处理大规模知识图谱数据时,查询响应速度提升数倍,能支持高并发的知识问答与分析请求。​ 3.【20%】方案的产品组成或技术选型​ 知识建模工具:采用基于本体的建模技术,结合可视化建模界面,用户可通过拖拽、配置等操作快速构建知识模型,支持 OWL、RDF 等标准语义网语言。​ 知识编辑平台:基于 Web 的富文本编辑界面,集成 AI 辅助编辑功能,支持多人协作编辑,确保知识更新的及时性与准确性。​ 知识融合引擎:基于深度学习的实体对齐与关系融合算法,自动处理数据冲突,实现多源数据的无缝融合。​ 数据接入网关:支持 JDBC、RESTful API、FTP 等多种数据接入协议,提供数据清洗、转换等预处理功能,保障数据质量。​ 数据入图工具:采用并行处理技术,将清洗后的数据高效导入知识图谱,支持增量更新与全量更新模式。​ 数据标引系统:基于 BERT 等预训练语言模型,结合自定义标注规则,实现自动化、高精度的数据标引。​ 知识图谱存储:选用分布式图数据库 Dgraph,具备高可用性、强一致性和水平扩展性,能够高效存储和查询大规模知识图谱数据。​ 这套工具集全面覆盖知识大脑构建需求并独具优势。若你对其中某个工具、技术或有其他优化需求,欢迎随时和我说说。
2450Java自然语言处理
监管深圳市所有冷冻冷藏冷库,目前已接入平台运行有1131家冷库,平台主要功能通过AI视频识别分析,监管冷库日常风险,及时提醒地区所负责人,负责人通知冷库人员做出整改。 AI视频风险识别:人员防护风险:未戴口罩、未穿防护服,人员变更风险:陌生人异常、冷链车辆异常,安全风险:整洁度异常、冷库叠超高、玩手机、有积水,走私风险:叉车异常。 系统分为7个子系统:平台管理系统、H5数据上报平台、数据可视化大屏、转码网关、ONVIF IPC摄像头接入平台、AI图像识别和行为分析平台、深圳市进口冷链追溯冷库信息。
1100Java机器学习/深度学习
与军工研究所合作开发针对雷达罩蜂窝孔径的测量仪器;实现对蜂窝格孔边长2-4mm,深度30mm范围内的单个蜂窝格孔内壁变形测量,并识别蜂窝格孔变形缺陷,形成六个蜂窝批量测量仪器;软件开发了上位测量操作及点云处理显示等核心算法;2D图像处理:1)图像操作及测量工具栏;2)选择测量中心处的二维图像(单个工件有多处测量中心);3)显示二维图像:可以任意选中格孔区域;4)结果显示1:通过3中任选多个孔,测量结果输出到该列表框,并最终输出到报表;5)缩略图显示:便于总图缩放显示;3D点云处理:1)3D点云操作及测量工具栏;2)选择测量中心处的3D点云(单个工件有多处测量中心);3)显示3D点云图像:可以任意选中格孔区域;4)结果显示1:通过3中任选多个孔,测量结果输出到该列表框,并最终输出到报表;5)内窥镜图像:显示格孔的合成图像;
860C/C++机器学习/深度学习
AI舆情系统产品系统
本产品聚焦全网舆情与信息数据的采集、处理与分析,可覆盖主流社交媒体、新闻网 站、视频平台、论坛等数据源,帮助企业或组织实时掌握行业动态、热点趋势以及公 众舆论,为业务决策提供数据支撑。 目前通过自研舆情监控系统,能够实时预警负面舆情,风险预警响应速度 ↑80%,负面舆情拦截率95% 案例:某游戏公司负面舆情事件响应效率 ↑95%
710Java机器学习/深度学习
随着人脸识别技术在智能安防、金融支付等隐私敏感场景的大规模部署,传统集中式训练模式导致的用户数据泄露风险成为技术发展的主要瓶颈。本文提出一种基于联邦学习与差分隐私的混合架构人脸识别系统。通过构建支持非独立同分布(Non-IID)数据的联邦学习框架,结合动态隐私预算管理策略,在保护用户数据隐私的同时提升模型泛化能力。实验结果表明,在 Olivetti 人脸数据集上,系统在 ε=1.0 的隐私预算下达到 92.3% 的准确率,较传统联邦学习方法提升 4.7%,验证了隐私保护与模型性能的高效平衡。
1440Apache机器学习/深度学习
本科专业为信息工程,曾经开发过多个微信小程序,结合各种单片机代码;精通微信小程序前后端搭建。 研究生专注于计算机视觉,尤其是医疗影像方向。深度学习方面代码熟练,使用Pytorch框架。擅长处理自然图像、CT、MRI、超声图像均有涉足。
1140Django微信小程序
后端使用java + spring开发rest api,移动端通过http请求后台api来传递数据,数据库使用mysql数据库。 移动端使用android,在后端定制随访内容,后台查询数据库,把表单内容格式化成json数据传递给移动端,在移动端根据后台定制json动态显示问卷内容。 获得随访数据以后,在后台运用大模型定期进行数据分析,排查出有风险的相关人群。
850Java机器学习/深度学习
人脸识别产品系统
本方案主要研究激活函数在人脸识别模型的搭建与训练过程中所产生的影响,具体分析不同激活函数对模型训练时间和准确率的作用。我们将从以下几个方面进行详细探讨:首先,使用不同的非线性函数进行模型搭建,比较其在训练过程中的表现差异;其次,针对饱和函数和非饱和函数进行分类研究,分析这两类函数在模型训练中的优势和不足。通过这些研究,我们期望能找到一种能够在保证准确率的前提下,缩短训练时间的激活函数,从而优化人脸识别模型的性能。
800Python数据处理
智能导盲系统产品系统
国内盲人数量占一定的比例,为解决盲人安全出行问题,设计了一套穿戴式的头盔智能导盲系统。我在此项目中主要负责设计导盲系统的视觉避障、目标识别、视觉引导等算法的框架搭建。采用pytorch深度学习框架与YOLOv5目标检测网络训练的日常出行目标识别模型以及tof测距雷达,最后设计了设备终端将图像传输和数据远程传输到算法服务端的分布式系统实现对行人、车、阶梯、石头、树等有效识别并定位其方位和距离达到引导盲人通过语音和腕部传感器感知环境信息实现主动避障,经实验测试有一定的辅助引导效果并在第十届全国光电设计大赛中获得国家级二等奖。
1190C/C++图形/图像处理
自主研发了一款安全平台,该平台集成了当前主流的CLIP后门攻防算法,能够有效支持用户管理、安全评测、信息查询等多种功能。平台通过灵活的架构设计,提供了高度可扩展的安全评估能力,帮助用户实时监控与分析模型的安全性。通过集成的攻防算法,平台能够针对CLIP模型进行全面的安全防护,确保模型在面对各种后门攻击时依然能够维持较高的鲁棒性和准确性。
1040PythonPython开发工具
炼丹侠产品系统
成功部署与优化超大参数模型: 在大型算力服务器集群上成功联动部署并优化了V3、R1 671B DeepSeek 满血版等超大参数模型,使用 Ollama、SGLang、KTransformer、Unsloth 等推理框架进行部署对比,提升了模型的推理性能和应用效率。 高效管理多GPU服务器集群: 使用 NCCL 技术完成多GPU服务器联动部署,解决了多机多卡之间的通信与负载均衡问题,成功实现了大规模分布式训练和推理 完成大模型微调: 利用 Ollama-Factory 对 14B 以上大模型进行 Full、Freeze、LoRA 微调,优化了模型精度和运行效率,提升了业务需求的适应性。 搭建前沿AI工作流解决方案: 完成 SD、Flux、Wan2.1 等图文生成、图生图、图生视频应用的部署,并成功搭建 Dify、Coze、ComfyUI 等 AI 工作流解决方案,成功实现大模型在商业应用中的实际落地。 开发大模型代理: 制作多个大模型代理,通过调用大模型工具为具体业务场景提供定制化解决方案,成功实现了商业化应用的落地,在开放API平台上参与Python后端路由开发工作
3160Pythondocker
#软件类设计#pc端#系统开发#app 接 专科/本科 软件类 论文设计、论文撰写,格式修改,降重 企业级 PC端系统开发、网页系统开发、手机app开发、小程序开发 高效完成✅ #软件类设计#pc端#系统开发#app 接 专科/本科 软件类 论文设计、论文撰写,格式修改,降重 企业级 PC端系统开发、网页系统开发、手机app开发、小程序开发 高效完成✅ #软件类设计#pc端#系统开发#app 接 专科/本科 软件类 论文设计、论文撰写,格式修改,降重 企业级 PC端系统开发、网页系统开发、手机app开发、小程序开发 高效完成✅
1160Java机器学习/深度学习
当前共22个项目more
×
寻找源码
源码描述
联系方式
提交