机器深度学习

机器学习,深度学习是人工智能的核心分支,致力于让计算机系统通过数据驱动的方式自动学习和改进性能,而无需显式编程。其核心是从数据中识别模式或规律,构建数学模型,使计算机能完成预测、分类、聚类等任务。主要类型包括监督学习、无监督学习和强化学习。机器学习广泛应用于自然语言处理、计算机视觉、推荐系统等领域,正重塑各行各业,是当前AI爆发的核心技术之一。
一、软件面向的行业和业务场景 本项目聚焦低成本深度感知需求,适用于小型企业或创业团队的轻量级应用场景,例如: 电商3D商品展示:用手机拍摄商品(如杯子、玩具)的左右视图,生成深度图,用于虚拟商城的“360°+深度”展示(比如用户可以看到杯子的凸起部分离屏幕更近,提升购物体验); 家用智能设备:扫地机器人的简单环境建模(用单相机移动拍摄,生成房间地面的深度图,判断障碍物距离,避免碰撞); 教育类APP:儿童编程软件中的“视觉实验”模块(让孩子用手机拍自己的玩具,生成深度图,直观理解“双目视觉”的原理)。 这些场景的核心需求是低成本、易部署(不需要专业双目相机),而本项目用“单相机+OpenCV”完美解决了这个问题,符合就业中“用最低成本实现核心功能”的要求。 二、项目功能模块与具体功能 项目按照“标定→双目校准→匹配→深度生成”的工业级 pipeline 设计,实现了4个核心功能,每个功能都对应任务书的考核点: 相机内参校准(张正友标定): 做什么:用手机拍15张不同角度的棋盘格照片(倾斜、旋转、远近),用OpenCV的cv2.calibrateCamera算法算出相机的焦距(镜头的“放大倍数”)、主点(图像中心)和畸变系数(消除镜头的“鱼眼效应”)。 为什么:没有内参,后续的深度计算会有很大误差(比如拍同一个杯子,畸变会让杯子看起来“变形”,导致深度图不准)。 相机外参定位(DLT标定): 做什么:用手机拍左右两个位置的立方体照片(6cm边长,硬纸板做的),手动标注立方体的顶点(比如前面的4个角、顶面的2个角),用cv2.solvePnP算法算出相机相对于立方体的旋转方向(比如相机向左转了10度)和平移位置(比如相机离立方体20cm)。 为什么:外参是“相机在哪里”的关键参数,后续双目标定需要左右相机的外参来算它们之间的相对位置。 双目姿态校准(双目标定): 做什么:结合左右相机的外参,算出它们之间的旋转矩阵R(右相机相对于左相机转了多少度)和平移向量T(右相机在左相机右边10cm),得到基线长度(双目系统的“眼睛间距”,决定深度计算的精度)。 为什么:没有双目姿态,左右图像的“对应关系”会乱,立体匹配无法正确找到同一个点在左右图像中的位置。 立体匹配与深度计算: 做什么:(1) 用手机拍左右两个角度的目标照片(比如杯子),用SAD滑动窗口算法(窗口大小可调,5x5/7x7)生成视差图(左右图像中同一个点的位置差);(2) 用视差图和之前的内参、基线长度,用公式算出深度图(灰度值表示距离,亮的地方离相机近,暗的地方离相机远)。 为什么:这是项目的核心功能——把“2D照片”变成“3D深度信息”,满足场景需求(比如电商的3D展示、扫地机器人的避障)。 三、项目的技术选型与架构特点 技术选型: 核心库:OpenCV(4.8.0版本)——工业级开源图像处理库,支持相机标定、立体匹配、深度计算等所有核心功能,跨平台(Windows/Android/iOS),适合就业中的“快速原型+部署”需求; 开发语言:Python(3.9版本)——开发效率高,语法简洁,适合快速调试(比如调整滑动窗口大小,马上就能看到深度图的变化); 硬件:手机(iPhone/Android)——低成本、易获取,不需要专业相机,符合“轻量级应用”的要求。 架构特点: 模块化 pipeline:每个功能(内参校准、外参定位、双目校准、深度计算)都是独立模块,比如“内参校准”模块可以用到其他单目项目中,“立体匹配”模块可以替换算法(比如把SAD换成更准确的SGBM),便于就业中的“功能复用”; 可参数化调整:滑动窗口大小、视差范围、最大深度阈值都是可调的,比如调整窗口大小(5x5→7x7),可以对比深度图的“清晰度”和“稳定性”(窗口大,深度图更模糊但更稳定;窗口小,更清晰但容易有误差),符合任务书“不同窗口尺寸对比”的要求; 可视化结果:生成的深度图是黑白的,直观看到目标的三维形状(比如杯子的凸起部分更亮),便于就业中的“结果展示”(比如给客户看“我们的系统能算出杯子的深度”)。
1440Python机器学习/深度学习
本程序致力于提供一个强大且实用的人群计数工具,其核心目标在于精准地检测图像或视频流中出现的人体目标,并高效地统计其数量。为实现这一任务,程序采用了当前深度学习领域的主流框架——PyTorch,构建并部署了一个经过优化的YOLOv3 (You Only Look Once, version 3) 目标检测模型。 YOLOv3 被选为本程序的核心算法,主要得益于其卓越的性能平衡。作为一种单阶段(one-stage)检测器,YOLOv3 以其显著的速度优势闻名,能够在保持较高检测精度的同时,满足实时处理的需求。其核心原理是将目标检测视为一个回归问题,通过单次前向传播即可预测图像中所有目标的边界框位置及所属类别概率。本程序特别利用了 YOLOv3 的 Darknet-53 骨干网络提取深度特征,并结合其多尺度预测机制(在三个不同尺度的特征图上进行检测),使其能够有效应对人群计数中常见的尺度变化大(如近处个体大、远处个体小)和密集遮挡等挑战,精准捕捉不同大小的人体目标。
1140Python源文件源码
车牌识别源文件源码
本代码基于YOLO(You Only Look Once)算法实现了高效的车牌识别系统。YOLO作为单阶段目标检测模型,通过卷积神经网络同时预测边界框和类别概率,显著提升了检测速度。系统首先利用YOLO模型定位图像中的车牌区域,随后通过OCR技术识别车牌字符。实验表明,该方案在复杂场景下仍能保持较高的准确率和实时性,平均识别精度达90%以上,单帧处理时间低于50ms。该方法克服了传统车牌识别算法受光照、角度影响的缺陷,为智能交通、车辆管理等应用提供了可靠的技术支持。
750Torch机器学习/深度学习
本项目通过第一部分在对案例主要数据进行数据处理后利用因果推断机器学习和匹配方法对PTSD病理进行探究,并针对病理提出保护路径。第二部分针对多模态数据融合要求,建立起数据处理,特征选择,多模态PTSD模型建立和指标评价的科学闭环。该项目结合了机器学习与因果推断算法,以及对非结构化数据的处理技术,使得对PTSD的分类预测效果有所提升,最终该项目也是获得了国家级二等奖的成绩。
950Python机器学习/深度学习50.00元
1.一份眼底照片的数据集(取自ODRI-5k),分为正常眼底和白内障眼底。 2.对数据集进行划分,使用TensorFlow训练两个网络resnet-18和mobilenet-v1分别训练两个模型。测试集上正确率分别达到95%。 3.本地部署一个基于neo4j数据库和医疗问答数据集的KGQA(知识图谱问答)项目。 4.使用Django构建一个本地网站,具备(人脸)注册/登录功能;上传眼底图像,后台对样本进行预测,页面显示诊断结果的功能;诊断结果在QA系统中进行查询, 给出医疗建议的功能;医疗问答页面功能,服务器根据用户输入的疾病相关问题,返回并显示相关答案,同时进行语音播报。
970PythonDjango
可以让客户根据需求所对应的数据,和体验感,从事Python开发行业有2-3年。经验丰富,代码编写富含高级程序员编写规范要求。有良好的对客户的责任性、时效性工作要求。一般不会超时完成客户的需求项目。精通爬虫案例800个以上的项目个数。数据分析项目经验精湛。爬虫和数据分析对项目分析能力具有独到的见解。具有许多客户的认可要求,对客户的要求。有良好的满意追求完善的体验。
630Python分布式应用/网格
此项目是后台的页面,首先需要安装requirements.txt的环境,然后修改settings.py文件,最后运行项目。具体参考下面步骤,下面步骤是我一步一步一步步的记录的,所以可以参考。 ai_app:是各大平台接口的内容,其中接口内容都卸载了views.py里面,所以需要自己删改,url.py是项目路由也是对外接口内容,admin.py和models.py是后台管理页面的内容 config:是项目配置文件,包括settings.py、urls.py、wsgi.py、asgi.py emo_api:是关于心里评估量表的后台内容,其中views.py里面是各种量表的算法 wechat_app:是微信小程序相关的内容,主要就是前台的小程序基本就是个页面,后台来计算所有的东西,包括聊天,调用各大接口,还有心理评估量表的页面
640Java机器学习/深度学习
文本分类模型源文件源码
1. 软件面向的行业和业务场景 本软件主要面向法律、投诉处理和文本分类领域,适用于需要对大量文本数据进行自动分类和处理的企业或机构。具体业务场景包括: 投诉分类:对客户投诉内容进行自动分类,识别投诉类型(如商品质量、服务态度等),以便后续处理。 法律文本分析:对法律相关文档进行语义理解和分类,辅助法律工作者快速定位关键信息。 NER(命名实体识别):从文本中提取关键实体(如产品名称、公司名称等),用于进一步的数据分析或知识图谱构建。 2. 项目功能模块及使用者功能 项目分为多个功能模块,每个模块对应特定的功能需求: 数据预处理模块: 功能:清洗、分词、去停用词、生成训练数据集。 使用者功能:提供干净、结构化的数据以供模型训练。 特征工程模块: 功能:将文本转换为数值特征(如词向量、TF-IDF 等)。 使用者功能:通过特征提取提升模型性能。 模型训练模块: 功能:支持多种深度学习模型(如 LSTM、GRU、CNN 和 Transformer)的训练。 使用者功能:根据业务需求选择合适的模型进行训练,并优化超参数。 模型评估模块: 功能:使用交叉验证、混淆矩阵、F1 分数等指标评估模型性能。 使用者功能:监控模型表现,调整模型以提高准确率。 预测模块: 功能:加载训练好的模型,对新输入的文本进行分类预测。 使用者功能:实时获取文本分类结果,辅助决策。 资源监控模块: 功能:监控系统资源(如 CPU、内存)和模型训练过程中的性能指标。 使用者功能:确保模型在有限资源下高效运行。 部署与应用模块: 功能:将模型封装为 RESTful API 或微服务,便于集成到现有系统中。 使用者功能:通过接口调用模型服务,实现自动化文本分类。 3. 项目的技术选型和架构特点 技术选型: 编程语言:Java 和 Python。 深度学习框架: Java:使用 Deeplearning4j 实现 LSTM、GRU 和 CNN 模型。 Python:使用 PyTorch 和 Hugging Face 的 Transformers 库实现 BERT 等 Transformer 模型。 依赖管理:Python 使用 pip-tools 管理依赖,Java 使用 Maven 进行依赖管理。 监控工具:TensorBoard 和 MLflow 用于模型训练监控,psutil 用于系统资源监控。 架构特点: 多语言协作:Java 主要负责模型训练和部署,Python 侧重于数据预处理和高级模型(如 BERT)的训练。 模块化设计:各功能模块独立开发,便于维护和扩展。 分布式部署:支持 Docker 容器化部署,便于在云端或本地环境中运行。 高性能计算:支持 GPU 加速(如 CUDA),提升模型训练和推理效率。 该软件通过结合 Java 和 Python 的优势,提供了从数据预处理到模型部署的完整解决方案,适用于需要高效、精准文本分类的业务场景。
1160Torch机器学习/深度学习10000.00元
人脸识别源文件源码
1. 软件面向的行业和业务场景(25%) 本项目主要面向 安防监控、智能考勤、身份认证、智慧零售 等行业,提供高效、轻量级的人脸识别解决方案。其主要应用场景包括: 安防监控:在公共场所(如商场、地铁、机场)进行人脸检测,实现异常行为预警和黑名单人员筛查。 智能考勤:在企业、学校等场景中,实现无感考勤,提高管理效率。 身份认证:用于门禁系统、智能支付、在线身份验证等,提高安全性和便利性。 智慧零售:通过人脸识别分析客户行为,优化商品摆放,提高用户体验。 2. 主要功能模块及用户体验(50%) 本项目采用 YOLO(You Only Look Once) 作为人脸检测模型,并基于 ncnn 框架 进行优化和部署。系统主要包括以下功能模块: 人脸检测模块 采用 YOLO 进行高效人脸检测 适应不同光照、角度、遮挡等复杂场景 提供实时检测能力,支持视频流处理 人脸特征提取与比对 通过深度学习提取人脸特征向量 提供 1:N(搜索)和 1:1(身份验证)比对模式 低计算成本,实现快速匹配 人脸数据库管理 用户可添加、删除、更新人脸数据 支持本地数据库和远程存储 提供 API 供第三方系统调用 结果可视化与日志记录 提供 Web 端或客户端实时查看检测结果 记录识别日志,便于追踪与回溯 支持图片、视频输入与批量处理 轻量级部署 针对移动端和嵌入式设备优化,低功耗运行 适配 ARM 设备,如 Android 终端、树莓派、嵌入式 IPC 设备等 3. 技术选型与架构特点(25%) 本项目的技术架构充分考虑了 高效性、跨平台兼容性和易用性,主要特点如下: ncnn 框架: 轻量级、无第三方依赖的神经网络推理框架 适用于移动端和嵌入式设备(ARM 设备优化) 支持 Vulkan 加速,提升 GPU 计算效率 YOLO 模型: 速度快、检测精度高 适用于实时应用,能够在低功耗设备上运行 C++/Android 端优化: 采用 C++ 进行核心算法开发,提升运行效率 可适配 Android 端(通过 JNI 调用) 模块化架构: 提供 API 接口,支持与其他系统集成 可扩展性强,未来可支持更多识别算法(如 RetinaFace、ScrFD)
1160C/C++机器学习/深度学习2000.00元
1. 软件面向的行业和业务场景 该项目是基于强化学习的自我博弈模型,主要面向人工智能(AI)和机器学习领域,特别是在棋类游戏和智能对弈的应用场景。其核心目标是训练一个能够与人类对弈并不断优化策略的 AI 玩家。通过强化学习与蒙特卡洛树搜索(MCTS)相结合,这个软件可以应用于任何需要决策优化和策略训练的领域,如自动驾驶、金融预测、机器人控制等。 业务场景包括: 人工智能竞技游戏:用于训练 AI 玩家,模拟自我博弈,提升 AI 策略。 游戏开发与优化:游戏公司可以用该技术提升 NPC(非玩家角色)智能,增强游戏体验。 教育与研究:为机器学习和强化学习的研究者提供实用工具,帮助学习和理解深度强化学习的应用。 2. 项目分为哪些功能模块,对使用者来说具体实现哪些功能 该项目包括以下主要功能模块: Board(棋盘信息模块):该模块存储并管理棋盘的信息,定义了棋局的状态和每个玩家的操作。 MCTS(蒙特卡洛树搜索模块):用于构建决策树,通过模拟多次博弈来选择最优的落子策略。其核心思想是利用树状结构进行搜索,并根据模拟结果做出决策。 Residual Neural Network(残差神经网络模块):该模块用于训练 AI 玩家,通过深度神经网络辅助预测最佳的落子位置。网络结构采用残差神经网络(ResNet),以提高训练效果和预测准确性。 AI Player(AI 玩家模块):将蒙特卡洛树搜索与神经网络结合,构建出一个能够自我学习和对弈的智能 AI 玩家。 Game(游戏过程模块):该模块定义了自我博弈和人类对战的流程,确保系统能够支持多种游戏模式,包括 AI 自我对弈和与人类对弈。 MetaZeta(主程序和 GUI 模块):该模块整合了所有功能模块,并提供图形用户界面(GUI)进行操作。用户可以通过界面启动自我对弈或与 AI 对战的模式。 具体功能包括: AI 自我对弈:用户点击“AI 自我对弈”按钮,系统将启动 AI 玩家进行自我博弈,训练其棋局策略。 与 AI 对战:用户可以与训练好的 AI 玩家进行对弈,测试 AI 的下棋水平。 3. 项目的技术选型和架构特点 该项目采用了以下技术选型: 操作系统:Ubuntu 18.04.6 LTS。 深度学习框架:TensorFlow GPU 2.6.2,用于加速深度学习模型的训练和推理。 编程语言:Python,用于开发所有功能模块,具有良好的扩展性和兼容性。 项目的架构特点: 模块化架构:整个项目由多个独立的模块组成,包括棋盘信息管理、蒙特卡洛树搜索、残差神经网络、AI 玩家、游戏过程控制等。各模块通过接口进行交互,保证了系统的灵活性和可扩展性。 强化学习与 MCTS 结合:通过强化学习算法(自我博弈)与蒙特卡洛树搜索相结合,AI 玩家可以从对弈中不断学习和优化策略,从而提高游戏水平。 GUI 界面:项目提供了图形化界面,方便用户启动不同的模式(自我对弈或与 AI 对战)。用户通过简洁的界面与 AI 进行交互,增加了使用的友好性。
1730python机器学习/深度学习
西红柿品种识别源文件源码
基于YOLO V5的西红柿品种检测平台是一个高效、用户友好的软件,它能够快速上传和处理图像,准确识别西红柿的不同品种,并通过直观的界面展示识别结果。平台支持批量处理和数据导出,同时平台具有百科全书,通过各种方法来向用户展示西红柿的各种科普知识、前世今生、品种分布、销售统计,此外,它还具备易于集成的API接口和全面的客户支持服务。 采用先进的YOLO V5深度学习模型,该模型以其快速、准确的目标检测能力而闻名,特别适合于图像识别任务。通过训练和优化模型,实现了对西红柿品种的高准确率识别,减少了误判和漏判的可能性。
1080html5机器学习/深度学习
深耕网络安全行业,负责的产品包括有SASE、云防火墙、云WAF、NDR和运维中心。 该作品主要展示PC端常用的Axure原型设计组件,辅助产品经理加快需求设计进度,细化产品原型文档、提高与前后端研发的交流沟通效率。
1070axure安全相关框架10.00元
领界AI源文件源码
该软件主要帮助客户开发对AI知识库的运用,使用客户产品知识库训练大模型回答相应问题,还能根据客户的语义,生成相应的图片(文生图、图生图)。 该项目主要分三大块,智能AI对话、智能生图、群聊功能,对于客户来说,主要解决了学生在机构中了解到机构的基本背景,通过机构的课程学习,能够使用app实现图片的生成,还能通过群聊与机构老师进行沟通。 该项目主要通过本地部署大模型(langchain+通义千问)实现智能对话,stablediffusion实现智能生图,通过调用腾讯即时通讯实现群聊功能,主要特点是大部分功能都通过开源框架本地部署来实现,能够节约外部调用api的费用。
1370java机器学习/深度学习
元创智能AI源文件源码
本项目面向学生,使用相关AI技术完成对学生的考试评估,以及与AI智能对话 提供智能绘图 帮助学生定位自己薄弱知识点,也能够出相关题目,帮助巩固自己薄弱的知识点.还有视频课拱学生学习. 还具备先进的拍照解题功能,只需上传题目照片,便可得到答案.
1400html5机器学习/深度学习10000.00元
1、项目应用于无人车在行进过程中对道路进行正确的识别,便于有效避障 2、功能主要是提取图像信息中的有效特征,实现道路与周围环境的分割,并将道路与环境通过二值图标注出来 3、主要框架为图像增强、特征提取、特征分析、特征降维、贝叶斯多线索融合机制、图像降噪
1680python计算机视觉库/人脸识别10.00元
我是一名专注于深度学习和人工智能领域的软件工程师,拥有丰富的实践经验和扎实的技术背景。我擅长使用 Python 进行编程,并在图像处理和自然语言处理领域有着深入的研究和实践。我曾成功应用深度学习模型于新闻文本分类、人体姿态识别项目以及图像分类检测等任务。 项目经验 新闻文本分类系统: 行业应用:媒体、出版、内容分析 功能实现:自动化新闻内容分类,个性化新闻推荐,内容审核 技术亮点:利用预训练模型 BERT 提升分类准确性,支持多类别文本分类 人体姿态识别系统: 行业应用:健康监测、运动分析、安全监控、人机交互 功能实现:运动训练分析,老年人跌倒检测,异常行为识别 技术亮点:实时数据处理,高准确性的姿态识别算法,易于集成的 API 设计
2490python网络爬虫100.00元
图像分割,使用上下采样构建模型,用三重损失指引模型梯度下降,用到的技术有cnn,残差网络,se模块,逐点卷积切换通道的技术,关键在于特征提取,牙齿属于精细化的输出,不是仅仅iou,dice高,能够看到分割的细节,彩色 图的分割,属于分割前景和背景,能够相当好的区分前景和背景
1370图像处理图形/图像处理
当前共17个项目more
×
寻找源码
源码描述
联系方式
提交