现有的基于卷积神经的SR重建算法可以获得令人满意的视觉效果,但仍然存在伪影和模糊的问题,并且这种现象对于放大倍数较大的(例如4× SR,8× SR)的重建任务来说更加严重。具体来说,随着放大倍数的增加,高频信息更容易丢失,重建误差呈几何级数增加。本文提出了一种新颖的基于高低频差分卷积的图像SR重建网络(High-Low Frequency Differentiation Dynamic Laplacian Pyramid Network, HLDDLap),它由多个高低频差分残差通道注意块(High-Low Frequency Differentiation Residual Channel Attention Blocks, HL-RCAB)来特征提取以及动态反卷积(Dynamic Deconvolution, DDC)来进行上采样操作,分别解决上述问题。首先,为了从图像中提取高频和低频信息,本文提出了一种高低频率差分卷积(High-Low Frequency Differentiation Convolution, HLC),它由一种可学习的高频差分卷积(High Freque