openCV

1.数据库模块。保存产品信息,异物缺陷信息。2.通信模块。负责上位机与下位机的交互通信。3.人机交互模块。负责人机交互。4.算法模块。负责3D点云下的异物检测预与测量,2d场景下的异物分类。
360C++机器深度学习
1. 产品面向科研院所,解决了自动处理遥感图像,自动识别机场和飞机的需求。 2. 相比市场常规方案,此方案具有速度快,识别准确的特点。 3. 方案用到了opencv的图像处理算法,包括图像增强,图像分割。用到了matlab实现的注意力算法,用到了tensorflow架构实现的图片分类和目标检测模型.方案的部署采用了docker技术.
1240C/C++图形/图像处理
双能X射线全身骨密度系统由上位机软件、STM32、FPGA组成,主要由上位软件进行扫描测控。技术包括操作系统原生Socket进行通讯、自主设计通讯协议设计与解析、骨密度算法实现/验证,线阵探测器图像重建、图像处理(降噪、增强、ROI分割)、深度学习训练以集成、软件架构设计、项目搭建、软件开发(QT)等。
850C/C++C/C++开发工具
与军工研究所合作开发针对雷达罩蜂窝孔径的测量仪器;实现对蜂窝格孔边长2-4mm,深度30mm范围内的单个蜂窝格孔内壁变形测量,并识别蜂窝格孔变形缺陷,形成六个蜂窝批量测量仪器;软件开发了上位测量操作及点云处理显示等核心算法;2D图像处理:1)图像操作及测量工具栏;2)选择测量中心处的二维图像(单个工件有多处测量中心);3)显示二维图像:可以任意选中格孔区域;4)结果显示1:通过3中任选多个孔,测量结果输出到该列表框,并最终输出到报表;5)缩略图显示:便于总图缩放显示;3D点云处理:1)3D点云操作及测量工具栏;2)选择测量中心处的3D点云(单个工件有多处测量中心);3)显示3D点云图像:可以任意选中格孔区域;4)结果显示1:通过3中任选多个孔,测量结果输出到该列表框,并最终输出到报表;5)内窥镜图像:显示格孔的合成图像;
980C/C++机器学习/深度学习
智能导盲系统产品系统
国内盲人数量占一定的比例,为解决盲人安全出行问题,设计了一套穿戴式的头盔智能导盲系统。我在此项目中主要负责设计导盲系统的视觉避障、目标识别、视觉引导等算法的框架搭建。采用pytorch深度学习框架与YOLOv5目标检测网络训练的日常出行目标识别模型以及tof测距雷达,最后设计了设备终端将图像传输和数据远程传输到算法服务端的分布式系统实现对行人、车、阶梯、石头、树等有效识别并定位其方位和距离达到引导盲人通过语音和腕部传感器感知环境信息实现主动避障,经实验测试有一定的辅助引导效果并在第十届全国光电设计大赛中获得国家级二等奖。
1250C/C++图形/图像处理
当前共5个项目more
×
寻找源码
源码描述
联系方式
提交