Python

Python是一种广泛使用的解释型、高级和通用的编程语言,[1]由荷兰数学和计算机科学研究学会的Guido van Rossum创造,第一版发布于1991年,它是ABC语言的后继者,也可以视之为一种使用传统中缀表达式的LISP方言。[2]Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。Python支持多种编程范型,包括函数式、指令式、结构化、面向对象和反射式编程。Python解释器易于扩展,可以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python也可用于可定制化软件中的扩展程序语言。Python
Python语言框架
Python是一种广泛使用的解释型、高级和通用的编程语言,[1]由荷兰数学和计算机科学研究学会的Guido van Rossum创造,第一版发布于1991年,它是ABC语言的后继者,也可以视之为一种使用传统中缀表达式的LISP方言。[2]Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。Python支持多种编程范型,包括函数式、指令式、结构化、面向对象和反射式编程。Python解释器易于扩展,可以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python也可用于可定制化软件中的扩展程序语言。Python
开发组织  吉多·范罗苏姆
本项目是一款智能的电气设计辅助工具,其主要功能包括:可视化任务配置:提供清晰的UI界面,用户可通过勾选复选框、下拉选择等方式,直观地完成设计任务书的功能选项配置。智能数据匹配:根据用户配置的功能选项,自动查询并匹配内置产品数据库中的对应元器件型号、规格及属性。自动化计算引擎:基于预置的逻辑算法(如线
150Python企业服务
爬虫技术产品系统
数据采集利用python进行数据采集,清洗爬虫可采集网易合法可见数据,利用csv进行储存数据采集数据采集利用python进行数据采集,清洗爬虫可采集网易合法可见数据,利用csv进行储存数据采集数据采集利用python进行数据采集,清洗爬虫可采集网易合法可见数据,利用csv进行储存数据采集
170Python物联网
1.客户通过excel填写游客身份信息,身份证,姓名手机号码等2.设置需购票日期,购票时间段,景点名称等3.设置定时任务,几点开抢4.查看购票成功用户,失败用户
190Python旅游
项目功能模块:系统主要分为四大模块:输入与解析模块(接收用户输入的产品名称和卖点,并进行关键词提取)、AIGC脚本生成模块(核心,利用大语言模型根据指令模板和案例库生成结构化脚本)、案例库与数据库模块(存储和匹配爆款脚本案例作为参考和提示词素材)、输出与解释模块(将生成的脚本、参考案例及深度分析以清
91Python人工智能
项目功能模块:本项目核心包含四大模块:音频流处理模块(负责VAD静音检测和音频分段)、语音识别(ASR)模块(基于SenseVoiceSmall模型进行语音转文字)、文本翻译模块(集成翻译API对识别结果进行多语种翻译)、Web服务与接口模块(提供HTTP和WebSocketAPI供客户端实时交互)
151Python人工智能
自动排程系统产品系统
1.工单状况:包括工单号,计划/实际开始完成时间,优先级,订单状态,计划数量,成品物料2.工序派单:工单号,组件料号,工序名称,组件计划数量(按工单BOM展开),工单步骤排队数量3.物料库存:物料名称,入库数量,入库时间,现有数量,上料数量,批次号4.自动排程:动态显示当前工单工作情况,自动排程给出
190Python企业服务
精准教育产品系统
功能包括,题库管理,知识点管理,智能化组卷,(自动化扫描,识别,客观题自动判卷,主观题自动识别分数,线上/线下判卷),学情分析,靶项卷推荐,学校端,可以批量添加老师,学生,组卷可以批量添加试题,可以自助上传试题,获取平台试题,获取菁优网,学科网试题
710PHP在线教育
全市场投管人收益表数据获取方案简介 1. 方案目标与解决问题 本方案主要面向**保险股份有限公司,旨在解决其在获取外部网站数据时遇到的效率低下和数据处理困难等问题 。具体来说,该方案自动化了从多个外部网站获取“年金基金投资管理”相关数据并将其写入指定Excel表格“全市场投管人收益表”的过程 。这大大减少了人工操作的耗时,将原本可能需要人工耗时数月的工作,通过技术方案将时间控制在可管理的范围内。 2. 方案特点与优势 相比于市场上的常规方案,本方案的独特之处在于其采用RPA+Python的混合技术方案,并兼顾了效率、成本和技术可行性。 RPA+Python混合方案:传统的RPA方案(方案1)在识别合并单元格时会出现数据错乱的问题,而纯Python方案(方案3)则需要熟悉复杂的数据分析和网页获取技术,且未用到RPA和IDP 。本方案将RPA(机器人流程自动化)和Python语言相结合,利用RPA处理网页访问、标题链接打开等操作,然后由Python读取RPA处理后的数据进行复杂的表格数据获取和联表查询,最后再将Python代码作为插件导入RPA中进行整体流程的调试和测试 。 高效性与高投入产出比:该混合方案避免了纯RPA方案中因处理页面元素耗时过长导致效率低下的问题,也规避了纯Python方案的技术难度 。例如,在获取80个网站数据的情况下,纯RPA方案预计需要240天左右,而本方案在确保数据准确性的同时,预计总用时仅为110天,大幅提高了效率 。 自动化录屏:流程运行后,方案能够自动生成录屏文件,便于客户直观地了解和验证流程运行情况,并能将生成的数据文件直接发送给客户 。 3. 方案技术组成 该方案主要由以下技术组件构成: RPA:用于自动化网页操作,例如访问指定网站、打开符合规则的标题链接等. Python:用于处理复杂的数据操作,包括读取RPA处理的数据、访问链接、获取表格数据、联表查询,以及将处理后的数据写入Excel文件. 配置文件:用于存放需要打开的网站标题、链接和规则等信息,以便于管理和维护.
610PythonIT
银河万通软件开发工作室主页 实现工作室外部交互 API 等内容,优秀的前端页面质量和后端支持系统。 INDEX SVG 基本入场动画,响应式页面,渐显动画组件,支持手机端。 显示成员基本信息,卡片化设计,_base 模板渲染,后端使用 flask 和 jinja2 渲染。 可以作为模板,提供给其它工作室或组织使用。
380Pythonweb
当前共9个项目
×
寻找源码
源码描述
联系方式
提交